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Chapter 1

Convex Sets

1.1 Introduction to Sets

1.1.1 Set Terminology
Below is a list of terminology that is used when discussing convex sets:

1. Euclidean Ball – In Euclidean n-space, an open n-ball of radius r ∈ R++

and center x0 ∈ Rn is the set of all points of distance less than r from x0:

Br(x0) = {x ∈ Rn : ||x− x0|| < r}.

In Euclidean n-space, a closed n-ball of radius r ∈ R++ and center x0 ∈
Rn is the set of all points of distance less than or equal to r from x0:

Br[x] = {x ∈ Rn : ||x− x0|| ≤ r}.

2. Open Set – An open set is a collection of points that does not include
limit/boundary points. More formally, a set X ⊆ Rn is open if for any
point x ∈ X there exists a ball centered at x which is contained in X :

∃ r > 0 : Br(x) ⊂ X , ∀x ∈ X .

For example, the interval (0, 1) = {x ∈ R : 0 < x < 1} is an open set.

3. Closed Set – A closed set is a collection of points that has a boundary.
More formally, a set X ⊆ Rn is closed if its complement Rn\X is open.
For example, the interval [0, 1] = {x ∈ R : 0 ≤ x ≤ 1} is closed because
its complement (−∞, 0) ∪ (1,∞) = {x ∈ R : x < 0 or x > 1} is open.

4. Interior – The interior of a set X ⊆ Rn is the set of all interior points:

intX = {x ∈ X : Br(x) ⊆ X for some r > 0}.

For example, the interior of the open set (0, 1) = {x ∈ R : 0 < x < 1} and
the closed set [0, 1] = {x ∈ R : 0 ≤ x ≤ 1} is the open set (0, 1). Note that
a set X ⊆ Rn is open if and only if X is equal to its interior.
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5. Closure – The closure, X̄ , of a set X ⊆ Rn consists of all points in X and
all limit points of X . A point x is considered a limit point of X if every
neighborhood of x contains a point in X other than x itself. For example,
the closure of the open set (0, 1) = {x ∈ R : 0 < x < 1} and the closed set
[0, 1] = {x ∈ R : 0 ≤ x ≤ 1} is the closed set [0, 1].

6. Boundary – The boundary of a set X ∈ Rn is the set of boundary points:

∂X = X̄ \intX .

For example, the boundary of the open set (0, 1) = {x ∈ R : 0 < x < 1}
and the closed set [0, 1] = {x ∈ R : 0 ≤ x ≤ 1} is the set of just two points:
{0, 1}. Note that an open set does not contain any of its boundary points,
while a closed set contains all of its boundary points.

7. Bounded – A set X ⊆ Rn is bounded if it is contained in a Euclidean
ball of finite radius, meaning

∃ x0 ∈ Rn, r > 0 : X ⊆ Br(x0).

For example, the interval (0, 1) = {x ∈ R : 0 < x < 1} is bounded, but
the interval (0,∞) = {x ∈ R : x > 0} is not bounded.

8. Compact – A set X ∈ Rn is compact if it is both closed and bounded.
For example, the interval [0, 1] = {x ∈ R : 0 ≤ x ≤ 1} is compact.

1.1.2 Hyperplanes & Half-spaces
Given a non-zero vector a ∈ Rn and constant b ∈ R, we can define a hyper-
plane, which is a set of the form

H = {x ∈ Rn : aTx = b}.

A hyperplane divides the Euclidean space Rn into two half-spaces. The closed
negative half-space and closed positive half space are defined as

H− = {x ∈ Rn : aTx ≤ b} and H+ = {x ∈ Rn : aTx ≥ b}.

The open negative half-space and open positive half space are defined as

H−− = {x ∈ Rn : aTx < b} and H++ = {x ∈ Rn : aTx > b}

Figure 1.1 shows how a hyperplane divides a whole space into two half-spaces.

Convex Optimization | S. Pohland
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Figure 1.1: The long black line is a hyperplane H ⊂ Rn, which
divides the whole space into two half spaces. The blue region is
the half space H+, and the purple region is the half space H−.

1.1.3 Polyhedra & Polytopes
A polyhedron is the intersection of a finite number of half-spaces and hyper-
planes. A polytope is a bounded polyhedron. A polyhedron/polytope P can
be expressed as a finite number of linear equalities and inequalities:

P = {x ∈ Rn : aTi x ≤ bi, i = 1, . . . ,m; cTj x = dj , j = 1, . . . , p}.

Figure 1.2 shows an example of a polytope.

Figure 1.2: The set P is a polytope that was formed by the
intersection of five hyperplanes/half spaces.

Convex Optimization | S. Pohland
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1.2 Convex Sets

1.2.1 Definition of Convexity
A set C ⊆ Rn is convex if the line segment between any two points in the set
is contained within the set. Written more formally, C is convex if and only if

λx1 + (1− λ)x2 ∈ C, ∀x1,x2 ∈ C, ∀λ ∈ [0, 1]

An extension of this definition says that the set C is convex if and only if

m∑
i=1

λixi ∈ C, ∀x1, . . . ,xm ∈ C, ∀λ ∈ Rm+ :

m∑
i=1

λi = 1.

A set C is strictly convex if the interior of the line segment joining any two
points in the set is contained within the relative interior of C. Figure 1.3 demon-
strate the differences between convex, non-convex, and strictly convex sets.

Figure 1.3: The first set is strictly convex because the line seg-
ment between any two points falls within the relative interior
of the set. The second set is convex because the line segment
between any two points falls within the set, but it is not strictly
convex because there are points in the set for which the line
segment between them falls on the boundary of the set. The
last set is not convex because there are points for which the line
segment between them does not fall entirely within the set.

1.2.2 Convex Cones
A set C ⊆ Rn is considered a cone if and only if

αx ∈ C, ∀x ∈ C, ∀α ≥ 0.

The set C is a convex cone if it is both convex and a cone, meaning

λ1x1 + λ2x2 ∈ C, ∀x1,x2 ∈ C, ∀λ1, λ2 ≥ 0.

Convex Optimization | S. Pohland
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1.2.3 Examples of Convex Sets
There are several important examples of common convex sets:

1. Empty set – ∅ ⊂ Rn

2. Singleton – {x0}, where x0 ∈ Rn

3. Whole space – Rn

4. Vector subspace – V ⊆ Rn

5. Open Euclidean ball – Br(x0) = {x ∈ Rn : ||x− x0|| < r}

6. Closed Euclidean ball – Br[x0] = {x ∈ Rn : ||x− x0|| ≤ r}

7. Hyperplane – H = {x ∈ Rn : aTx = b}

8. Closed half-space – H− = {x ∈ Rn : aTx ≤ b}
H+ = {x ∈ Rn : aTx ≥ b}

9. Open half-space – H−− = {x ∈ Rn : aTx < b}
H++ = {x ∈ Rn : aTx > b}

10. Polyhedron – P = {x ∈ Rn : aTi x ≤ bi, cTj x = dj ;

i = 1, . . . ,m, j = 1, . . . , n}

11. Line – L = {y ∈ Rn : y = αx+ x0; α ∈ R, x,x0 ∈ Rn}

12. Ray – L+ = {y ∈ Rn : y = αx+ x0; α ≥ 0, x,x0 ∈ Rn}
L− = {y ∈ Rn : y = αx+ x0; α ≤ 0, x,x0 ∈ Rn}

13. Line Segment – L̂ = {y ∈ Rn : y = αx+ x0; α ∈ [α0, α1], x,x0 ∈ Rn}

We can prove all of these sets are convex using the definition of convexity.

1.2.4 Operations on Convex Sets
Below are a list of common functions on sets that preserve convexity:

1. Intersection of Sets

If C1, . . . , Cm are convex sets, their intersection, C =
m⋂
i=0

Ci, is also convex.

2. Sum of Sets

If C1, . . . , Cm are convex sets, their sum, C =
∑m
i=1 Ci, which is defined

as C :=
{∑m

i=1 xi : xi ∈ Ci
}
, is also convex.

Convex Optimization | S. Pohland
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3. Affine Transformation
If f : Rn → Rm is an affine function such that f(x) = Ax + b, where
A ∈ Rm×n and b ∈ Rm, and C ⊆ Rn is convex, then the transformed set,
f(C) :=

{
f(x) : x ∈ C

}
, is also convex.

4. Projection
If C ⊆ Rm × Rn is a convex set, then the projection onto Rm, defined as
T :=

{
x1 ∈ Rm : (x1,x2) ∈ C, x2 ∈ Rn

}
, is also convex.

5. Perspective Function
The perspective function scales vectors so their last component is one, then
drops the last component. It is defined on the domain domP = Rn×R++

such that P (z, t) = z
t . If C ⊆ domP is convex, then the perspective of

the set, P (C) := {P (x) : x ∈ C}, is also convex.

6. Linear Fractional Function
Suppose g : Rn → Rm+1 is an affine function defined as

g(x) :=

[
A
cT

]
x+

[
b
d

]
,

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and d ∈ R. The function f : Rn → Rm
given by f = P (g(·)) is defined such that

f(x) =
Ax+ b

cTx+ d
.

The domain of this function is domf = {x : cTx+ d > 0}. This function
is called the linear-fractional function. If C ⊆ domf is a convex set, then
its image, f(C) := {f(x) : x ∈ C}, is also convex.

1.3 Combinations & Hulls

1.3.1 Linear Combination
If P ⊆ Rn is the set P = {x1, . . . ,xm}, a linear combination of its points is

x =

m∑
i=1

λixi, where λi ∈ R, i = 1, . . . ,m.

1.3.2 Affine Combination & Hull
An affine combination is a linear combination in which all of the coefficients,
λ1, . . . , λm, sum to one. An affine hull is the set of all possible affine combi-
nations of a set of points. The affine hull for the set P = {x1, . . . ,xm} is

aff(P ) =

{
x =

m∑
i=1

λixi :

m∑
i=1

λi = 1

}
.
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The relative interior of a set P is the interior relative to its affine hull:

relint(P ) =
{
x ∈ P : Br(x) ∩ aff(P ) ⊆ P for some r > 0

}
The relative boundary is then defined as rel∂P = P̄\relint(P ).
For example, consider the set P = {x ∈ R3 : x1 ∈ [−1, 1], x2 ∈ [−1, 1], x3 = 0}.
The affine hull of P is aff(P ) = {x ∈ R3 : x3 = 0}, which is the (x1, x2) plane.
The interior of P is intP = ∅ and the boundary of P is ∂P = P . The relative
interior of P is relintP = {x ∈ R3 : x1 ∈ (−1, 1), x2 ∈ (−1, 1), x3 = 0} and the
relative boundary is rel∂P = {x ∈ R3 : max{|x1|, |x2|} = 1, x3 = 0}.

1.3.3 Conic Combination & Hull
An conic combination is a linear combination in which all of the coefficients,
λ1, . . . , λm, are non-negative. A conic hull is the set of all possible conic
combinations. The conic hull for the set P = {x1, . . . ,xm} is given by

conic(P ) =

{
x =

m∑
i=1

λixi : λi ≥ 0

}
.

Note that every conic hull is a convex cone. Figure 1.4 shows two examples.

Figure 1.4: In the first figure, the set is composed of the ten
black points. In the second image, the set is the region contained
within the black lines. In both figures, the origin in Rn is shown
in green, and the conic hull is the blue shaded region.

1.3.4 Convex Combination & Hull
A convex combination is a linear combination in which all of the coefficients,
λ1, . . . , λm, are non-negative and sum to one. A convex hull is the set of all
possible convex combinations. The convex hull for the set P = {x1, . . . ,xm} is

co(P ) =

{
x =

m∑
i=1

λixi : λi ≥ 0,

m∑
i=1

λi = 1

}
.
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Interestingly, every polytope is the convex hull of its vertices. If P is a polytope
with vertices {v1, . . . ,vm} and x ∈ P, then

x =

m∑
i=1

λivi, where λi ≥ 0,

m∑
i=1

λi = 1.

Note that the convex hull is always convex and is the smallest convex set that
contains the set P . Figure 1.5 shows examples of convex hulls.

Figure 1.5: In the first figure, the set is composed of the ten
black points, and the convex hull is the blue shaded region. In
the second image, the set is the region contained within the
black lines, and the convex hull is the blue shaded region.

1.4 Separating and Supporting Hyperplanes

1.4.1 Separating Hyperplane Theorem
Given two sets C1, C2 ⊂ Rn, the hyperplaneH separates the two sets if C1 ⊆ H−
and C2 ⊆ H+. The hyperplane H strictly separates the two sets if C1 ⊆ H−−
and C2 ⊆ H++. The separating hyperplane theorem says that if C1 and
C2 are non-empty, disjoint, convex sets (i.e. C1 ∩ C2 = ∅), then there exists a
separating hyperplane H for the two sets. If C1 is closed and bounded and C2

is closed, then C1 and C2 can be strictly separated. This is shown in figure 1.6.
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Figure 1.6: Set C1 is closed, bounded, and convex, and set C2

is closed and convex. Both sets are non-empty and disjoint.
According to the separating hyperplane theorem, there is a sep-
arating hyperplane H that strictly separates the two sets.

1.4.2 Supporting Hyperplane Theorem
Given a convex set C ⊆ Rn, the hyperplane H is a supporting hyperplane
at the boundary point z ∈ ∂C if z ∈ H and C ⊂ H−. The supporting
hyperplane theorem says that if C ⊆ Rn is a convex set and z ∈ ∂C, then
there exists a supporting hyperplane for C at z. This is shown in figure 1.7.

Figure 1.7: C is a convex set and the point z is on the boundary
of C, so, according to the supporting hyperplane theorem, there
exists a supporting hyperplane H that goes through this point.
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Chapter 2

Convex Functions

2.1 Convex & Concave Functions

2.1.1 Domain of Function
Consider a function f : Rn → R. The (effective) domain of f is the set over
which the function is well-defined, which we can express as

domf = {x ∈ Rn : −∞ < f(x) <∞}.

For example, the function f(x) = log(x) has the domain domf = R++, and the
function f(x) = 1

x has the domain domf = {x ∈ R : x 6= 0}.

2.1.2 Definition of Convexity
Convex – A function f is convex if and only if domf is a convex set and

f
(
λx1 + (1− λ)

)
≤ λf(x1) + (1− λ)f(x2), ∀x1,x2 ∈ domf, ∀λ ∈ [0, 1].

Strictly Convex – f is strictly convex if and only if domf is convex and

f
(
λx1+(1−λ)x2

)
< λf(x1)+(1−λ)f(x2), ∀x1,x2 ∈ domf,x1 6= x2, ∀λ ∈ (0, 1).

Concave – A function f is concave if and only if domf is a convex set and

f
(
λx1 + (1− λ)x2

)
≥ λf(x1) + (1− λ)f(x2), ∀x1,x2 ∈ domf, ∀λ ∈ [0, 1].

Strictly Concave – f is strictly concave if and only if domf is convex and

f
(
λx1+(1−λ)x2

)
> λf(x1)+(1−λ)f(x2), ∀x1,x2 ∈ domf,x1 6= x2, ∀λ ∈ (0, 1).

Note that the function f is concave if and only if the function −f is convex.
Similarly, f is strictly concave if and only if −f is strictly convex. Figure 2.1
provides a visualization of convexity for a function of a scalar variable.
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Figure 2.1: This is an example of a convex function f : R→ R.
Notice that for any two points x1 and x2 in the domain domf ,
the function lies below the line segment connecting these points.

A generalization of the definition of convexity is named Jensen’s inequality.
For a convex function f with domain domf , Jensen’s inequality says that if
x1, . . . ,xn ∈ domf , λ1, . . . , λn ≥ 0, and λ1 + . . . , λn = 1, then

f

(
n∑
i=1

λixi

)
≤

n∑
i=1

λif(xi).

This inequality can be proven using induction and the definition of convexity.
See https://en.wikipedia.org/wiki/Jensen%27s_inequality.

2.1.3 Extended-Value Extension
It is often convenient to extend convex functions to all of Rn by defining its
value to be ∞ outside of its domain. If f is a convex function with domain
domf , its extended-value extension, f̃ : Rn → R ∪ {∞}, is defined as

f̃(x) =

{
f(x) if x ∈ domf
∞ if x 6∈ domf

.

Similarly, it is convenient to extend concave functions to all of Rn by defining
its value to be −∞ outside of its domain. If f is a concave function with domain
domf , its extended-value extension, f̃ : Rn → R ∪ {−∞}, is defined as

f̃(x) =

{
f(x) if x ∈ domf
−∞ if x 6∈ domf

.

Convex Optimization | S. Pohland
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2.1.4 Examples of Convex/Concave Functions
Below are examples of convex and concave functions in R:

1. Affine – The affine function ax + b is both convex and concave on R for
all a ∈ R and b ∈ R.

2. Exponential – The exponential function eax is convex on R for all a ∈ R.

3. Power – The power function xa is convex on R++ when a ≥ 1 or a ≤ 0.
It is concave on R++ for 0 ≤ a ≤ 1.

4. Power of Absolute Value – The function |x|p is convex on R for p ≥ 1.

5. Logarithm – The logarithmic function log(x) is concave on R++ for all
logarithmic bases.

6. Negative Entropy – The negative entropy function x log(x) is convex on
R++ for all logarithmic bases.

Below are examples of convex and concave functions in Rn:

1. Affine – The affine function aTx + b is both convex and concave on Rn
for all a ∈ Rn and b ∈ R.

2. Norms – Every valid norm f(x) = ||x|| is convex on Rn.

3. Maximum – The max function f(x) = max{x1, . . . , xn} is convex on Rn.

4. Quadratic over linear – The quadratic over linear function f(x, y) = x2

y

with domain domf = R×R+ = {(x, y) ∈ R2 : y > 0} is convex on domf .

5. Log-Sum-Exp – The log-sum-exp function f(x) = lse(x) = log
(∑n

i=1 e
xi

)
is convex on Rn.

6. Geometric Mean – The geometric mean f(x) =
(∏n

i=1 xi

)1/n
is concave

on domf = Rn++.

Below are examples of convex and concave functions in Rn×n:

1. Log-Determinant – The log-determinant function f(X) = log
(
detX) is

concave on Sn++.

We can prove all of these functions are convex using the definition of convexity.
However, to show that a function is convex, it is often easier to use the conditions
for convexity discussed in the next section.

2.2 Conditions for Convexity
Besides resorting to the definition, there are several other rules and conditions
that can characterize the convexity of a function. Note that when mentioning
the convexity of a function f , it is implicitly assumed that domf is convex.
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2.2.1 First Order Condition
Consider a differentiable function f : Rn → R with the domain

domf = {x ∈ Rn : −∞ < f(x) <∞}.

Convex – The function f is convex if and only if domf is a convex set and

f(y) ≥ f(x) +∇xf(x)T (y − x), ∀x,y ∈ domf.

Strictly Convex – f is strictly convex if and only if domf is convex and

f(y) > f(x) +∇xf(x)T (y − x), ∀x,y ∈ domf, x 6= y.

Concave – The function f is concave if and only if domf is a convex set and

f(y) ≤ f(x) +∇xf(x)T (y − x), ∀x,y ∈ domf.

Strictly Concave – f is strictly concave if and only if domf is convex and

f(y) < f(x) +∇xf(x)T (y − x), ∀x,y ∈ domf, x 6= y.

Proof: To prove f is convex under the first order condition for convexity, recall
that f is convex if and only if domf is a convex set and

f
(
λx1 + (1− λ)x2

)
≤ λf(x1) + (1− λ)f(x2), ∀x1,x2 ∈ domf, ∀λ ∈ [0, 1].

Let’s first assume that f is convex, which implies that for λ ∈ [0, 1],

f
(
λy + (1− λ)x

)
≤ λf(y) + (1− λ)f(x)

f
(
λy + x− λx

)
≤ λf(y) + f(x)− λf(x)

f
(
x+ λ(y − x)

)
≤ f(x) + λ(f(y)− f(x))

f
(
x+ λ(y − x)

)
− f(x) ≤ λ(f(y)− f(x))

f
(
x+ λ(y − x)

)
− f(x)

λ
≤ f(y)− f(x)

Taking the limit of the left-hand side of the above inequality as λ→ 0, we get

∇xf(x)T (y − x) ≤ f(y)− f(x)

∇xf(x)T (y − x) + f(x) ≤ f(y)

Therefore, if f is convex, the the first order condition for convexity holds. Now
let’s assume the first order condition for convexity holds. Let x,y ∈ domf ,
λ ∈ [0, 1], and z = λx+ (1− λ)y. Because we assume that the domain domf is
a convex set, z ∈ domf . Now assuming the first order condition holds,
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f(x) ≥ f(z) +∇xf(z)T (x− z)

f(y) ≥ f(z) +∇xf(z)T (y − z)

Taking the convex combination of these inequalities, we get

λf(x) + (1− λ)f(y) ≥ λ
(
f(z) +∇xf(z)T (x− z)

)
+ (1− λ)

(
f(z) +∇xf(z)T (y − z)

)
= λf(z) + λ∇xf(z)Tx− λ∇xf(z)Tz + f(z) +∇xf(z)Ty

−∇xf(z)Tz − λf(z)− λ∇xf(z)Ty + λ∇xf(z)Tz

= f(z) +∇xf(z)T
(
λx+ (1− λ)y − z

)
= f(z) +∇xf(z)T

(
z − z

)
= f(z) +∇xf(z)T (0)

= f(z) = f(λx+ (1− λ)y)

Because this holds for any choice of x,y ∈ domf and any λ ∈ [0, 1], this is the
definition of convexity. Now we have proven that the first order condition for
convexity holds if and only if f is convex. We can prove the first order condition
for strict convexity, concavity, and strict concavity in a very similar way.

Geometric Interpretation

The geometric interpretation of the first order condition for convexity is that the
graph of f is bounded below everywhere by any one of its tangent hyperplanes.
Figure 2.2 helps demonstrate this interpretation for a scalar function.

Figure 2.2: Because f is a convex function, f(y) is bounded
below for all points y ∈ domf by any one of its tangent lines
f(x) +∇xf(x)T (y − x), where x ∈ domf .

In a similar way, if f is a concave function, then the graph of f is bounded
above everywhere by any one of its tangent hyperplanes.
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2.2.2 Second Order Condition
Consider a twice differentiable function f : Rn → R with the domain

domf = {x ∈ Rn : −∞ < f(x) <∞}.

Convex – The function f is convex if and only if domf is a convex set and

∇2
xf(x) � 0, ∀x ∈ domf.

Strictly Convex – f is strictly convex if and only if domf is convex and

∇2
xf(x) � 0, ∀x ∈ domf.

Concave – The function f is concave if and only if domf is a convex set and

∇2
xf(x) � 0, ∀x ∈ domf.

Strictly Concave – f is strictly concave if and only if domf is convex and

∇2
xf(x) ≺ 0, ∀x ∈ domf.

Proof: To prove the second order condition for convexity, we can use the first
order condition. Let x0 be a point in domf and v ∈ Rn be any direction. Since
domf is an open set, the point z = x0 +λv is still in domf for sufficiently small
λ > 0. The Taylor series expansion of f(z) about x0 is given by

f(z) = f(x0) +∇xf(x0)T (z − x0) +
1

2
(z − x0)T∇2

xf(x0)(z − x0) +O(||z − x0||32)

= f(x0) +∇xf(x0)T (z − x0) +
1

2
(λv)T∇2

xf(x0)(λv) +O(||λv||32)

= f(x0) +∇xf(x0)T (z − x0) +
1

2
λ2vT∇2

xf(x0)v +O(λ3)

Using the first order condition, if f is convex, then

f(z) ≥ f(x0) +∇xf(x0)T (z − x0)

f(z)− f(x0)−∇xf(x0)T (z − x0) ≥ 0

1

2
λ2vT∇2

xf(x0)v +O(λ3) ≥ 0

1

2
vT∇2

xf(x0)v +
O(λ3)

λ2
≥ 0

This holds for all λ ∈ [0, 1]. If we take λ→ 0, then

1

2
vT∇2

xf(x0)v ≥ 0

Because this holds for any vector v ∈ Rn, ∇2
xf(x0) is positive semidefinite.
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Now suppose that ∇2
xf(x) � 0 for all x ∈ domf and let y ∈ domf . Using the

second order Taylor series approximation of f(y) about x, we can write

f(y) ≈ f(x) +∇xf(x)T (y − x) +
1

2
(y − x)T∇2

xf(x)(y − x)

Because we assume that the Hessian of f is positive semidefinite, the last term
of the expression above is non-negative. Therefore,

f(y) ≥ f(x) +∇xf(x)T (y − x)

Because this holds for any x,y ∈ domf , the function f is convex, which com-
pletes our proof. Now we have proven that the second order condition for con-
vexity holds if and only if f is convex. We can prove the second order condition
for strict convexity, concavity, and strict concavity in a very similar way.

Geometric Interpretation

The geometric interpretation of the second order condition is that if f is convex,
then the gradient of f is non-decreasing everywhere, which implies that the
graph of f is concave up. Similarly, if f is a concave, the gradient of f is non-
increasing everywhere, which implies that the graph of f is concave down. If f
is strictly convex, then the gradient of f is increasing everywhere, and if f is
strictly concave, then the gradient of f is decreasing everywhere.

2.2.3 Epigraph Condition
Consider a function f : Rn → R. The epigraph of this function is the set

epif =
{

(x, t) ∈ domf × R : f(x) ≤ t
}
.

The function f is convex if and only if its epigraph is a convex set.

2.2.4 Sublevel Set Condition
Consider a function f : Rn → R. For c ∈ R, the c-sublevel set of f is

L−c =
{
x ∈ domf : f(x) ≤ c

}
.

If f is a convex function, then L−c is a convex set for any c ∈ R. If f is a strictly
convex function, then L−c is a strictly convex set for any c ∈ R.

2.3 Operations on Convex Functions

2.3.1 Non-Negative Weighted Sum
If fi : Rn → R, i = 1, . . . ,m are functions with domains domfi and αi ≥ 0,
i = 1, . . . ,m are non-negative constants, the non-negative weighted sum is

f(x) =

m∑
i=1

αifi(x) with domf =

m⋂
i=1

domfi.
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If fi is convex over its corresponding domain, domfi, for i = 1, . . . ,m, then f is
convex over its domain, domf . If fi is concave over its corresponding domain,
domfi, for i = 1, . . . ,m, then f is concave over its domain, domf .

2.3.2 Affine Transformation
Let f : Rn → R be some function with domain domf and g : Rm → R be a
function defined such that

g(x) = f(Ax+ b), A ∈ Rn×m, b ∈ Rn.

The domain of g is domg = {x ∈ Rm : Ax + b ∈ domf}. If f is convex on its
domain, domf , then g is convex on its domain, domg. If f is concave on its
domain, domf , then g is concave on its domain, domg.

2.3.3 Pointwise Maximum & Suppremum
Two Functions

If f1 and f2 are two functions with domains domf1 and domf2 respectively, then
their pointwise maximum is defined as

f(x) = max
{
f1(x), f2(x)

}
The domain of the pointwise maximum is domf = domf1 ∩ domf2. If f1 is
convex over domf1 and f2 is convex over domf2, then f is convex over domf .

Family of Functions

Let fα for some α ∈ A be a single function within a family of functions defined
by the set A. The pointwise suppremum of these functions is defined as

f(x) = sup
α∈A

fα(x) with domf =

{ ⋂
α∈A

domfα

}⋂{
x : f(x) <∞

}
.

If fα is convex over domfα for all α ∈ A, then f is convex over domf . If the
set A is a compact, then we can replace the suppremum with the maximum.

2.3.4 Pointwise Minimum & Infimum
Two Functions

If f1 and f2 are two functions with domains domf1 and domf2 respectively, then
their pointwise minimum is defined as

f(x) = min
{
f1(x), f2(x)

}
.

The domain of the pointwise minimum is domf = domf1 ∩ domf2. If f1 is
concave over domf1 and f2 is concave over domf2, then f is concave over domf .
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Family of Functions

Let fα for some α ∈ A be a single function within a family of functions defined
by the set A. The pointwise infimum of these functions is defined as

f(x) = inf
α∈A

fα(x) with domf =

{ ⋂
α∈A

domfα

}⋂{
x : f(x) <∞

}
.

If fα is concave over domfα for all α ∈ A, then f is concave over domf . If the
set A is a compact, then we can replace the infimum with the minimum.

2.3.5 Scalar Composition
Let h : R → R and g : Rn → R be two functions, and define the function
f : Rn → R as f(x) = h(g(x)). Let the function h̃ be the extended-value
extension of h. We have the following conditions for convexity/concavity of f :

1. f is convex if h is convex, h̃ is non-decreasing, and g is convex.

2. f is convex if h is convex, h̃ is non-increasing, and g is concave.

3. f is concave if h is concave, h̃ is non-decreasing, and g is concave.

4. f is concave if h is concave, h̃ is non-increasing, and g is convex.

2.3.6 Vector Composition
Let h : Rk → R and g : Rn → Rk be two functions, and define the function
f : Rn → R as f(x) = h(g(x)). Let the function h̃ be the extended-value
extension of h. We have the following conditions for convexity/concavity of f :

1. f is convex if h is convex, h̃ is non-decreasing in each argument, and gi is
convex for i = 1, . . . , k.

2. f is convex if h is convex, h̃ is non-increasing in each argument, and gi is
concave for i = 1, . . . , k.

3. f is concave if h is concave, h̃ is non-decreasing in each argument, and gi
is concave for i = 1, . . . , k.

4. f is concave if h is concave, h̃ is non-increasing in each argument, and gi
is convex for i = 1, . . . , k.

2.3.7 Perspective Function
If f : Rn → R is some function with the domain domf , then the perspective of
f is the function g : Rn+1 → R, which is defined as

g(x, t) =

{
tf(xt ) if xt ∈ domf, t > 0

∞ otherwise
.
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The domain of the perspective function is domg =
{

(x, t) : xt ∈ domf, t > 0
}
.

If f is convex over domf , then the perspective function g is convex over domg.
If f is concave over domf , then the perspective function g is concave over domg.

2.4 Convex Conjugate Function

2.4.1 Definition of the Convex Conjugate
Let f : Rn → R be a function that is not necessarily convex with the domain
domf , which is non-empty but not necessarily convex. Its convex conjugate,
or Fenchel conjugate, is denoted f∗ : Rn → R∪{∞} and is defined such that

f∗(y) = sup
x∈domf

(
yTx− f(x)

)
.

We often treat f as an extended real-valued function with the value f(x) =∞
for points x outside of the domain domf , so we can equivalently define the
convex conjugate, or Fenchel conjugate, such that

f∗(y) = sup
x∈Rn

(
yTx− f(x)

)
.

The convex conjugate of the convex conjugate is denoted f∗∗ : Rn → R ∪ {∞}
and is defined such that

f∗∗(x) = sup
y∈domf∗

(
xTy − f∗(y)

)
.

If we treat f∗ as an extended real-valued function with the value f∗(y) = ∞
for points y outside of the domain domf∗, then we can equivalently define the
conjugate of the conjugate such that

f∗∗(x) = sup
y∈Rn

(
xTy − f∗(y)

)
.

2.4.2 Properties of the Convex Conjugate
Consider the function f : Rn → R with the domain domf . Below are some
important properties of the convex conjugate of this function.

1. For any function f , its convex conjugate f∗ is the pointwise suppremum
of affine functions, so f∗ is necessarily convex, even if f is not convex.

2. For any function f , its convex conjugate f∗ is lower semicontinuous, mean-
ing that its epigraph is a closed, convex subset of Rn+1.

3. In general, if domf and domf∗ are non-empty, then f∗∗(x) ≤ f(x) for all
x ∈ Rn. If f is convex and lower semicontinuous, then f∗∗ = f .

4. The Fenchel inequality says that

f(x) + f∗(y) ≥ xTy, ∀x,y ∈ Rn
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2.4.3 Transformations on the Convex Conjugate
Below is the impact of some common transformations on the convex conjugate.

1. Separable sum:

If f(x,u) = g(x) + h(u), then f∗(y,v) = g∗(y) + h∗(v).

2. Scalar multiplication:

If f(x) = αg(x) for α > 0, then f∗(y) = αg∗
(
y
α

)
.

If f(x) = g
(
αx
)
for α 6= 0, then f∗(y) = g∗(yα ).

If f(x) = αg(xα ) for α > 0, then f∗(y) = αg∗
(
y
)
.

3. Affine addition:

If f(x) = g(x) + aTx+ b, then f∗(y) = g∗(y − a)− b.

4. Linear composition:

If f(x) = g(Ax+ b), then f∗(y) = g∗(A−Ty)− bTA−Ty and its domain
is domf∗ = ATdomg∗.

2.5 Subgradients & Subdifferentials
Consider a convex, differentiable function f : Rn → R. The first order condition
for convexity says that at any point x ∈ Rn,

f(y) ≥ f(x) +∇xf(x)T (y − x), ∀y ∈ domf.

If f is non-differentiable, then ∇xf(x) may not exist at some points x ∈ Rn.
We can instead write that at any point x ∈ Rn,

f(y) ≥ f(x) + gTx (y − x), ∀y ∈ domf,

where gx is the subgradient of f at x. The set of all subgradients of f at x is
called the subdifferential and is denoted ∂f(x).

If f is differentiable at x0, then the subdifferential at this point, ∂f(x0), contains
only the gradient of f at x0 (i.e. ∂f(x0) = {∇f(x0)}). If f is not differentiable
at x0, then the subdifferential at this point is ∂f(x0) = [a, b], where

a = lim
x↑x0

∇xf(x) b = lim
x↓x0

∇xf(x)

The subdifferential ∂(x) is a closed, convex, non-empty, and bounded set.
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Chapter 3

Convex Optimization
Problems

3.1 Convex Optimization

3.1.1 Standard Form of Optimization Problems
In general, an optimization problem is either:

1. A minimization problem with the standard form

p∗ = min
x∈D

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

2. A maximization problem with the standard form

p∗ = max
x∈D

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

In either case, p∗ is the optimal value, x is the optimization variable, D
is the domain, f0 is the objective function, fi is an inequality constraint
function, and hj is an equality constraint function.
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3.1.2 Optimization Terminology
Below is a list of commonly used terminology relevant to optimization problems.

1. Domain – The domain is the set of points for which the objective function
and all of the constraint functions are defined, which can be expressed as

D =

{
domf0

}
∩

{
m⋂
i=1

domfi

}
∩

{
p⋂
j=1

domhj

}
.

2. Feasible Point – A point x ∈ D is considered a feasible point if it satisfies
the inequality constraints (i.e. fi(x) ≤ 0 for i = 1, . . . ,m) and the equality
constraints (i.e. hj(x) = 0 for j = 1, . . . , p).

3. Feasible Set – The feasible set is the set of all feasible points:

X =
{
x ∈ D : fi(x) ≤ 0, i = 1, . . . ,m; hj(x) = 0, j = 1, . . . , p

}
.

4. Unconstrained – An optimization problem is called unconstrained if it
has no inequality or equality constraints (i.e. m = p = 0). The domain
of an unconstrained problem is D = domf0, and the feasible set of of an
unconstrained problem is X = domf0.

5. Feasible – An optimization problem is considered feasible if there exists
at least one feasible point (i.e. X 6= ∅).

6. Infeasible – An optimization problem is considered infeasible if there are
no points in the domain that satisfy all of the constraints (i.e. X = ∅).
By convention, if a minimization problem is infeasible, p∗ =∞. Similarly,
if a maximization problem is infeasible, p∗ = −∞.

7. Optimal Solution – A feasible point x̂ ∈ X is optimal if f0(x̂) = p∗.

8. Optimal Set – The optimal set is the set if all optimal points:

Xopt =
{
x̂ ∈ X : f0(x̂) = p∗

}
.

For a minimization problem, the optimal set is given by

Xopt = arg min
x∈X

f0(x).

For a maximization problem, the optimal set is given by

Xopt = arg max
x∈X

f0(x).

9. Solvable – An optimization problem is considered solvable if there exists
an optimal point that attains the optimal value (i.e. Xopt 6= ∅).
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10. Unsolvable – An optimization problem is considered unsolvable if there
is no point in the feasible set that attains the optimal value (i.e. Xopt = ∅).

11. Unbounded – An optimization problem is considered unbounded below
if there is no lower bound on the optimal solution. If a minimization
problem is unbounded below, the problem is feasible but not solvable and
p∗ = −∞. Similarly, a problem is considered unbounded above if there
is no upper bound on the optimal solution. If a maximization problem is
unbounded above, the problem is feasible but not solvable and p∗ =∞.

12. Locally Optimal – A point in the feasible set is locally optimal if it
minimizes the objective function over nearby points in the feasible set.

13. Globally Optimal – A point in the feasible set is globally optimal if it
minimizes the objective function over all points in the feasible set.

14. Inactive/Slack – An inequality constraint fi is considered inactive, or
slack, at the optimal solution, x̂, if fi(x̂) is strictly less than zero.

15. Active – An inequality constraint fi is considered active at the optimal
solution, x̂, if fi(x̂) is equal to zero.

3.1.3 Convex Optimization Problems
In general, a minimization problem is convex if its objective function is a convex
function and its feasible set is a convex set. For a minimization problem written
in standard form, the problem is convex if

1. f0 is convex

2. fi is convex for i = 1, . . . ,m

3. hj is affine for j = 1, . . . , p

In general, a maximization problem is convex if its objective function is a concave
function and its feasible set is a convex set. For a maximization problem written
in standard form, the problem is concave if

1. f0 is concave

2. fi is convex for i = 1, . . . ,m

3. hj is affine for j = 1, . . . , p

3.1.4 Feasibilty Problem
The goal of a feasibility problem is to determine whether a feasbile point ex-
ists within a set of constraints. A feasibility problem is a convex optimization
problem if the feasible set is convex. This is true if the inequality constraint
functions are convex and the equality constraint functions are affine.
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3.1.5 Optimality Conditions
Theorem: Consider a convex minimization problem whose feasible set is X .
If the objective function f0 is differentiable, then the feasible point x̂ ∈ X is
optimal (i.e. f0(x̂) ≤ f0(x), ∀x ∈ X ) if and only if

∇xf0(x̂)T (x− x̂) ≥ 0, ∀x ∈ X .

Proof: Let’s assume that ∇xf0(x̂)T (x− x̂) ≥ 0 for all x ∈ X . We want to show
that this implies f0(x̂) ≤ f0(x) for all x ∈ X . Because f0 is a convex function,
the first order condition says that

f0(x) ≥ f0(x̂) +∇xf0(x̂)T (x− x̂) ≥ f0(x̂) + 0 = f0(x̂).

Therefore, if ∇xf0(x̂)T (x− x̂) ≥ 0 for all x ∈ X , then x̂ ∈ X is optimal.

Now let’s assume that x̂ is optimal, meaning f0(x̂) ≤ f0(x) for all x ∈ X . We
want to show that ∇xf0(x̂)T (x− x̂) ≥ 0 for all x ∈ X . Let’s suppose that there
exists a point y ∈ X such that ∇xf0(x̂)T (y − x̂) < 0. Now consider the point
z = λy + (1− λ)x̂, where λ ∈ [0, 1]. Because the feasible set is convex, z ∈ X .
Using the Taylor series expansion of f0(z) about x̂, we can write

f0(z) = f0(x̂) +∇xf0(x̂)T (z − x̂) +O(||z − x̂||22)

= f0(x̂) +∇xf0(x̂)T (λy + (1− λ)x̂− x̂) +O(||λy + (1− λ)x̂− x̂||22)

= f0(x̂) + λ∇xf0(x̂)T (y − x̂) +O(||λ(y − x̂)||22).

For small enough values of λ, we can say that

f0(z) ≈ f0(x̂) + λ∇xf0(x̂)T (y − x̂).

Assuming that ∇xf0(x̂)T (y − x̂) < 0, this implies that f0(z) < f0(x̂) for small
enough values of λ. This contradicts our assumption that the point x̂ ∈ X is
optimal. Therefore, if x̂ is optimal, then ∇xf0(x̂)T (x− x̂) ≥ 0 for all x ∈ X .

Theorem: For an unconstrained convex minimization problem, if the objective
function f0 is differentiable, then the point x̂ ∈ X is optimal if and only if

∇xf0(x̂) = 0n.

Proof: For a convex minimization problem that is unconstrained, the feasible
set, X , is simply the domain of the objective, domf0. This implies that the
optimality condition must be satisfied for any y ∈ domf0, which means

∇xf0(x̂)T (y − x̂) ≥ 0, ∀y ∈ domf0.

It should also be satisfied for any point z = 2x̂− y ∈ domf0, which means

∇xf0(x̂)T (z − x̂) = ∇xf0(x̂)T (x̂− y) = −∇xf0(x̂)T (y − x̂) ≥ 0.

The only way that we can simultaneously satisfy both inequalities is if ∇xf0(x̂).

Convex Optimization | S. Pohland



CHAPTER 3. CONVEX OPTIMIZATION PROBLEMS

3.2 Equivalent Problems
Two optimization problems are said to be equivalent if:

1. For every feasible point in the first optimization problem, there is a cor-
responding feasible point in the second optimization problem.

2. For every feasible point in second optimization problem, there is a corre-
sponding feasible point in the first optimization problem.

3.2.1 Monotone Objective
If φ : R → R is a continuous, monotonically increasing function over X , then
the following problems are equivalent:

(1) p∗ = min
x∈D

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

(2) p̃∗ = min
x∈D

φ(f0(x))

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

These two problems have the same set of optimal solutions, Xopt. For x̂ ∈ Xopt,
f0(x̂) = p∗ and φ(f0(x̂)) = p̃∗. This indicates that the optimal values of the
two problems are related in the following way: p̃∗ = φ(p∗) and p∗ = φ−1(p̃∗).

If the first optimization problem is convex and the function φ(·) is convex, then
the second optimization problem is also convex. For non-negative objective
functions, we often use φ(·) = log(·), φ(·) = (·)2, and φ(·) = α(·), where α > 0.

3.2.2 Monotone Constraint
Consider an inequality constraint that can be expressed as l(x) ≤ r(x). If φ :
R→ R is a continuous, monotonically increasing function over X , this constraint
is equivalent to φ(l(x)) ≤ φ(r(x)). If φ : R→ R is a continuous, monotonically
decreasing function over X , this constraint is equivalent to φ(l(x)) ≥ φ(r(x)).

3.2.3 Change of Variables
If φ : Rn → Rn is a bijective function, then we can define the functions f̃i(·) =
fi(φ

−1(·)) for i = 0, 1, . . . ,m and h̃j(·) = hj(φ
−1(·)) for j = 1, . . . , p. Under

these assumptions, the following problems are equivalent:
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(1) p∗ = min
x∈D

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

(2) p̃∗ = min
y∈D

f̃0(y)

s.t. f̃i(y) ≤ 0, i = 1, . . . ,m

h̃j(y) = 0, j = 1, . . . , p

If f0(x̂) = p∗ and f̃0(ŷ) = p̃∗, then ŷ = φ(x̂) and x̂ = φ−1(ŷ). If the first
optimization problem is convex and φ(·) is affine and invertible, then the second
optimization problem is also convex. Sometimes a well-chosen variable trans-
formation may also transform a non-convex problem into a convex one.

3.2.4 Slack Variables
The inequality fi(x) ≤ 0 is true if and only if there exists a slack variable si ≥ 0
such that fi(x) + si = 0. Using this fact, we can write two equivalent problems:

(1) p∗ = min
x∈D

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

(2) p̃∗ = min
x∈D,s∈Rm

f0(x)

s.t. si ≥ 0, i = 1, . . . ,m

fi(x) + si = 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

These two problems are equivalent in the following ways:

1. If x is feasible for (1), then (x, s) is feasible for (2), where si = −fi(x).

2. If (x, s) is feasible for (2), then x is feasible for (1).

3. If x̂ is optimal for (1), then (x̂, ŝ) is optimal for (2), where ŝi = −fi(x̂).

4. If (x̂, ŝ) is optimal for (2), then x̂ is optimal for (1).
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3.2.5 Equality to Inequality Constraint
Consider an optimization problem that is not necessarily convex:

(1) p∗ = min
x∈D

f0(x)

s.t. b(x) = u

In some cases, we can substitute the equality constraint with an inequality:

(2) p̃∗ = min
x∈D

f0(x)

s.t. b(x) ≤ u

These problems have the same optimal value under the following conditions:

1. f0 is non-increasing over D

2. b is non-decreasing over D

3. p∗ and p̃∗ are attainable

If these condition are met, we may be able to turn a non-convex optimization
problem into a convex one without changing the optimal value.

3.2.6 Inactive Constraints
Consider the convex optimization problem whose optimum is achieved at x̂:

(1) p∗ = min
x∈D

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

We can define the set of indices that correspond to active constraints as

A(x̂) =
{
i ∈ {1, . . . ,m} : fi(x̂) = 0

}
.

If the optimal value of the optimization problem (1) is attained for the optimal
solution x̂, then x̂ is also optimal for the optimization problem:

(2) p̃∗ = min
x∈D

f0(x)

s.t. fi(x) ≤ 0, i ∈ A(x̂)

hj(x) = 0, j = 1, . . . , p

Therefore, we can remove inactive constraints from the optimization problem.
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3.2.7 Minimization to Maximization
The following two problems are equivalent:

(1) p∗ = min
x∈D

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . ,m

(2) p̃∗ = max
x∈D

− f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . ,m

If f0(x̂) = p∗, then −f0(x̂) = p̃∗, which implies that p∗ = −p̃∗. Additionally,
if (1) is a convex optimization problem, then f0 is a convex function and the
feasible set is convex. If f0 is a convex function, then −f0 is a concave function.
The two problems have the same set of constraints, so if the feasible set for (1)
is convex, then the feasible set for (2) is convex. Therefore, if (1) is a convex
optimization problem, then (2) is also a convex optimization problem.

3.2.8 Epigraph Problem
The following two problems are equivalent:

(1) p∗ = min
x∈D

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . ,m

(2) p̃∗ = min
x∈D, t∈R

t

s.t. f0(x) ≤ t
fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . ,m

If x̂ is optimal for (1), then (x̂, t̂) is optimal for (2), where t̂ = f0(x̂). If (x̂, t̂) is
optimal for (2), then x̂ is optimal for (1). Note that the equivalence still holds
if the original problem is a maximization problem.
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3.3 Types of Convex Optimization Problems
There are various types of convex optimization problems that will be discussed
in later sections. Figure 3.1 shows a Venn diagram of the types of convex
optimization problems covered later in these notes.

Figure 3.1: The Venn diagram shows the relationship be-
tween seven types of optimization problems: Linear Programs
(LPs), Quadratic Programs (QPs), Quadratically Constrained
Quadratic Programs (QCQPs), Second-Order Cone Programs
(SOCPs), Semidefinite Programs (SDPs), Geometric Programs
(GPs), and Generalized Geometric Programs (GGPs).
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Duality

4.1 Overview of Duality

4.1.1 Langrangian Duality
When discussing duality, the primal problem is an optimization problem that
is not necessarily convex and has the form

p∗ = min
x∈D

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

The optimization variable, x, for the primal problem is called the primal vari-
able. The Lagrangian, denoted L : Rn × Rm × Rp → R, is the weighted sum
of the objective and constraint functions. The Lagrangian is defined as

L(x,λ,ν) = f0(x) +

m∑
i=1

λifi(x) +

p∑
j=1

νjhj(x),

where λ = [λ1, . . . , λm] and ν = [ν1, . . . , νp] are Lagrange multipliers or dual
variables. The Lagrange dual function, g : Rm × Rp → R, is defined as

g(λ,ν) = min
x∈D

L(x,λ,ν).

The Lagrange dual function is always jointly concave in (λ,ν), and g(λ,ν) ≤ p∗
for all λ ≥ 0m and all ν. The Lagrange dual function provides a lower bound on
the optimal solution, p∗, so we want to find the best lower bound by maximizing
g(λ,ν). This leads us to the dual problem, which is defined as

d∗ = max
λ∈Rm, ν∈Rp

g(λ,ν)

s.t. λ ≥ 0m
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Note that, because the Lagrange dual function is always jointly concave in
(λ,ν), the dual problem is always a convex optimization problem, regardless of
whether the primal problem is a convex optimization problem.

4.1.2 Duality Justification
To justify the way that we defined the dual problem, we will start by discussing
indicator functions. If C ⊆ Rn is a non-empty, convex subset of the whole space
Rn, then the indicator function for this set is defined as

IC(x) =

{
0 if x ∈ C
∞ otherwise

.

There are two very important indicator functions:

I{0n}(x) =

{
0 if x = 0n

∞ otherwise
and IRn

−
(x) =

{
0 if x ≤ 0n

∞ otherwise
.

Notice that we can equivalently express these indicator functions as

I{0n}(x) = max
α∈R

αx and IRn
−

(x) = max
α≥0

αx.

Recall that we defined the primal problem as

p∗ = min
x∈D

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

This constrained problem is equivalent to the following unconstrained problem:

p∗ = min
x∈D

{
f0(x) +

m∑
i=1

I{fi(x)≤0}(x) +

p∑
j=1

I{hj(x)=0}(x)

}
.

Using the definitions of the two important indicator functions that we defined
previously, this problem is equivalent to the following:

p∗ = min
x∈D

{
f0(x) +

m∑
i=1

IR−
(
fi(x)

)
+

p∑
j=1

I{0}
(
hj(x)

)}
.

Now we can express the indicator functions in the above problem as

IR−
(
fi(x)

)
= max

λi≥0
λifi(x) and I{0}

(
hj(x)

)
= max

νj∈R
νjhj(x).
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This allows us to express our primal problem as the following min-max problem:

p∗ = min
x∈D

{
f0(x) +

m∑
i=1

max
λi≥0

λifi(x) +

p∑
j=1

max
νj∈R

νjhj(x)

}

p∗ = min
x∈D

max
λ≥0m,ν∈Rp

{
f0(x) +

m∑
i=1

λifi(x) +

p∑
j=1

νjhj(x)

}
Using the Lagrangian definition, we can also express the primal problem as

p∗ = min
x∈D

max
λ≥0m,ν∈Rp

L(x,λ,ν).

From our definition of the dual problem, it is also straightforward to see that
we can express it as the following max-min problem:

d∗ = max
λ≥0m,ν∈Rp

min
x∈D

L(x,λ,ν).

4.1.3 Weak & Strong Duality
In the previous section, we justified writing the primal problem as min-max
problem and the dual problem as a max-min problem. A helpful theorem that
relates these two problems is the min-max inequality, which says that for any
function φ : Rn × Rm and any non-empty sets X ⊆ Rn and Y ⊆ Rm,

sup
y∈Y

inf
x∈X

φ(x,y) ≤ inf
x∈X

sup
y∈Y

φ(x,y).

Furthermore, the min-max theorem says that if X ⊆ Rn is convex and com-
pact, Y ⊆ Rm is convex, φ(·,y) is convex and continuous over X for all y ∈ Y ,
and φ(x, ·) is concave and continuous over Y for all x ∈ X, then

sup
y∈Y

inf
x∈X

φ(x,y) = inf
x∈X

sup
y∈Y

φ(x,y).

Recall that we can express the primal and dual problem in the following way:

p∗ = min
x∈D

max
λ≥0,ν

L(x,λ,ν) and d∗ = max
λ≥0,ν

min
x∈D

L(x,λ,ν).

The min-max inequality says that

max
λ≥0,ν

min
x∈D

L(x,λ,ν) ≤ min
x∈D

max
λ≥0,ν

L(x,λ,ν).

This leads us to the notion of weak duality, which says d∗ ≤ p∗ always holds.
We call the difference δ∗ = p∗ − d∗ the duality gap. The min-max theorem
also says that, in some cases, the maximization and minimization operators can
be exchanged without changing the value of the problem. When this is true,
we say that strong duality holds, meaning that p∗ = d∗. When strong duality
holds, the duality gap is zero (i.e. δ∗ = 0).
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4.2 Strong Duality

4.2.1 Slater’s Condition
Recall that we defined the primal problem as

p∗ = min
x∈D

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

Assuming the primal problem is convex, the inequality constraint functions fi
are convex and the equality constraint functions hj are affine. Let’s further
assume that the first k ≤ m inequality constraint functions are affine. Slater’s
condition says that strong duality holds (i.e. p∗ = d∗) if there exists a point x
in the relative interior of the domain D such that

1. fi(x) ≤ 0 for i = 1, . . . , k

2. fi(x) < 0 for i = k + 1, . . . ,m

3. hj(x) = 0 for j = 1, . . . , p

Furthermore, if these conditions hold, there exists an optimal primal variable x̂
and optimal dual variables (λ̂, ν̂) that attain the optimal value p∗ = d∗ > −∞.

Note that this is a sufficient condition to show that strong duality holds, but
it is not necessary. This means we cannot use Slater’s condition to show that
strong duality does not hold. As another note, Slater’s condition can be used
to check strong duality for a convex optimization problem, but it cannot tell us
whether strong duality holds if the primal problem is not convex.

4.2.2 Consequences of Strong Duality
If we assume that strong duality holds and that the primal and dual optimal
variables are x̂ and (λ̂, ν̂) respectively, then the Lagrangian at the optimum is

L(x̂, λ̂, ν̂) = f0(x̂) +

m∑
i=1

λ̂ifi(x̂) +

p∑
j=1

ν̂jhj(x̂).

Because the optimal primal and dual variables must be feasible, we know that
fi(x̂) ≤ 0, hj(x̂) = 0, and λ̂i ≥ 0 for i = 1, . . . ,m and j = 1, . . . , p. Therefore,
λ̂ifi(x̂) ≤ 0 and ν̂jhj(x̂) = 0. This allows us to write

L(x̂, λ̂, ν̂) ≤ f0(x̂).

If strong duality holds, then f0(x̂) = p∗ = d∗ = g(λ̂, ν̂). Therefore,

f0(x̂) = min
x∈D
L(x, λ̂, ν̂).
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From this expression, we can write the following inequality:

f0(x̂) ≤ L(x̂, λ̂, ν̂).

Combining this with our previous inequality, we can see that

f0(x̂) = min
x∈D
L(x, λ̂, ν̂) = L(x̂, λ̂, ν̂).

This has two important consequences:

1. Recall that we previously stated that

L(x̂, λ̂, ν̂) = f0(x̂) +

m∑
i=1

λ̂ifi(x̂) +

p∑
j=1

ν̂jhj(x̂).

We also know that λ̂ifi(x̂) ≤ 0 and ν̂jhj(x̂) = 0 for i = 1, . . . ,m and
j = 1, . . . , p. In order for L(x̂, λ̂, ν̂) to be exactly equal to f0(x̂), we
must have λ̂ifi(x̂) = 0 for i = 1, . . . ,m. This is the complementary
slackness principle, which says that if fi(x̂) < 0, then λ̂i = 0. Similarly,
if λ̂i > 0, then fi(x̂) = 0. Therefore, the optimal dual variables λ̂i can
indicate which inequality constraints are slack/inactive.

2. The optimal primal variable, x̂, is the minimizer of the Lagrangian evalu-
ated at the dual optimizers, L(x, λ̂, ν̂). If L(x, λ̂, ν̂) is differentiable, then
a necessary condition for x̂ to be a global minimizer is ∇xL(x, λ̂, ν̂)|x=x̂ =
0. Furthermore, if the primal problem is convex, then L(x, λ̂, ν̂) is convex
in x, and this is a sufficient condition for a point to be a global minimizer.

Note that if L(x, λ̂, ν̂) is convex, it may have multiple global minimizers,
and the primal optimal, x̂, is just one of them. However, if L(x, λ̂, ν̂)
is strictly convex, then it has a unique minimizer. If this minimizer is
feasible, then it is the primal solution x̂. If it is not feasible, then no
optimal primal solution exists.

4.2.3 KKT Conditions
For an optimization problem with differentiable objective and constraint func-
tions, for which strong duality holds, theKarush-Kuhn-Tucker (KKT) con-
ditions are a set of necessary conditions for optimality. When the optimization
problem is convex, the KKT conditions are necessary and sufficient for points
to be primal and dual optimal. This means that for a convex optimization
problem, any point which satisifes the KKT conditions is an optimizer, but for
non-convex optimization problems, a point satisfying the KKT conditions may
not be an optimizer. The KKT conditions are the following:

1. Primal feasibility – fi(x̂) ≤ 0, i = 1, . . . ,m; hj(x̂) = 0, j = 1, . . . , p
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2. Dual feasibility – λ̂i ≥ 0, i = 1, . . . ,m

3. Complementary slackness – λ̂ifi(x̂) = 0, i = 1, . . . ,m

4. Lagrangian stationarity – ∇xL(x, λ̂, ν̂)|x=x̂ = 0

4.2.4 Perturbations & Sensitivity Analysis
When strong duality holds, the optimal dual variables give useful information
about the sensitivity of the optimal value with respect to perturbations of the
constraints. Consider the primal problem

p∗ = min
x∈D

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

We can express the perturbed primal problem as

p∗(u,v) = min
x∈D

f0(x)

s.t. fi(x) ≤ ui, i = 1, . . . ,m

hj(x) = vj , j = 1, . . . , p

If strong duality holds and the dual optimum is attained for (λ̂, ν̂), then

p∗(u,v) ≥ p∗ − λ̂Tu− ν̂Tv.

This leads us to the following observations about the sensitivity of optimization
problems to perturbations of the constraints:

1. If λ̂i is large and we tighten the ith inequality constraint (i.e. ui < 0),
then the optimal value p∗(u,v) will increase greatly.

2. If λ̂i is small and we loosen the ith inequality constraint (i.e. ui > 0),
then the optimal value p∗(u,v) will decrease slightly.

3. If ν̂j is large and positive and vj < 0, then the optimal value p∗(u,v) will
increase greatly.

4. If ν̂j is large and negative and vj > 0, then the optimal value p∗(u,v) will
increase greatly.

5. If ν̂j is small and positive and vj > 0, then the optimal value p∗(u,v) will
decrease slightly.

6. If ν̂j is small and negative and vj < 0, then the optimal value p∗(u,v) will
decrease slightly.
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If strong duality holds and p∗(u,v) is differentiable at (u,v) = (0m,0p), then
the optimal dual variables tell us the local sensitivities of the optimal value with
respect to constraint perturbations:

∂p∗(0m,0p)

∂ui
= −λ̂i and

∂p∗(0m,0p)

∂vj
= −ν̂j .

This says that tightening the ith inequality constraint (i.e. ui < 0) a small
amount yields an increase in p∗ of approximately −λ̂iui. Similarly, loosening
the ith inequality constraint (i.e. ui > 0) a small amount yields a decrease
in p∗ of approximately λ̂iui. Furthermore, if λ̂i = 0, then the ith inequality
constraint is inactive, and loosening/tightening the constraint a small amount
has a negligible effect on the optimal value. In general, if λ̂i is small, then
loosening/tightening the ith inequality constraint does not have a significant
effect on the optimal value. Conversely, if λ̂i is large, then loosening/tightening
the ith inequality constraint does have a significant effect on the optimal value.
Similar conclusions can be made for the equality constraints.

4.3 Alternative Forms of Duality
When discussing duality, we primarily focused on Lagrangian duality, where
L(x,λ,ν) is the Lagrangian and the primal and dual problem are given by

p∗ = min
x∈D

max
λ≥0,ν

L(x,λ,ν) and d∗ = max
λ≥0,ν

min
x∈D

L(x,λ,ν).

Now we will discuss two other forms of duality that do not use the Lagrangian.
For these alternate forms of duality, we still have a primal problem with the
optimal value p∗ and a dual problem with the optimal value d∗, and the notion
of weak and strong duality still holds. However, our discussion of Slater’s con-
dition, consequences of strong duality, KKT conditions, and sensitivity under
perturbations no longer relate to these alternate forms of duality.

4.3.1 Duality & Convex Conjugate
Suppose we have the following convex optimization problem:

p∗ = min
x∈domf

f(x).

Recall that if the function f is convex and lower semicontinuous, then it is equal
to the convex conjugate of its convex conjugate (i.e. f = f∗∗), so

f(x) = f∗∗(x) = max
y∈domf∗

(xTy − f∗(y)).

Under this condition, we can reformulate the original optimization problem as

p∗ = min
x∈domf

max
y∈domf∗

(xTy − f∗(y)).
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Now that we have expressed the primal problem as a min-max problem, we can
dualize this problem to the following max-min problem:

d∗ = max
y∈domf∗

min
x∈domf

(xTy − f∗(y)).

4.3.2 Duality & Norms
Suppose we have the following convex optimization problem:

p∗ = min
x∈D

{
||f1(x)||1 + ||f2(x)||2 + ||f3(x)||∞

}
,

where f1 : Rn → Rm, f2 : Rn → Rp, and f3 : Rn → Rq. Using the concept of
dual norms, we can express the lp norms in the optimization problem as

||f1(x)||1 = max
u1:||u1||∞≤1

uT1 f1(x)

||f2(x)||2 = max
u2:||u2||2≤1

uT2 f2(x)

||f3(x)||∞ = max
u3:||u3||1≤1

uT3 f3(x)

This then allows us to express our optimization problem as

p∗ = min
x∈D

max
u1,u2,u3

uT1 f1(x) + uT2 f2(x) + uT3 f3(x)

s.t. ||u1||∞ ≤ 1, ||u2||2 ≤ 1, ||u3||1 ≤ 1

Now that we have expressed the primal problem as a min-max problem, we can
dualize this problem to the following max-min problem:

d∗ = max
u1,u2,u3

min
x∈D

uT1 f1(x) + uT2 f2(x) + uT3 f3(x)

s.t. ||u1||∞ ≤ 1, ||u2||2 ≤ 1, ||u3||1 ≤ 1

Convex Optimization | S. Pohland



Part III

Common Convex Programs

46



Chapter 5

Linear Programs (LPs)

5.1 Overview of Linear Programs

5.1.1 Common Form
When the objective and constraint functions of an optimization problem are all
affine, the problem is called a linear program (LP) and has the general form:

p∗ = min
x∈Rn

cTx+ d

s.t. Gx ≤ h
Ax = b

where c ∈ Rn, d ∈ R, G ∈ Rm×n, h ∈ Rm, A ∈ Rp×n, and b ∈ Rp. Note that
the constant d is sometimes omitted because it does not affect the optimal set.
The constraints in this form are a set of m inequalities and p equalities:

G =

g
T
1
...
gTm

 h =

h1...
hm


Gx ≤ h ≡ gTi x ≤ hi, i = 1, . . . ,m

A =

a
T
1
...
aTp

 b =

b1...
bp


Ax = b ≡ aTj x = bj , j = 1, . . . , p
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5.1.2 Optimal Solution
Unconstrained Problem

An unconstrained linear program has the form

p∗ = min
x∈Rn

cTx+ d.

The optimal value of an unconstrained linear program is

p∗ =

{
d if c = 0n

−∞ otherwise
.

Constrained Problem

As stated previously, the constraints of an LP include m affine inequalities and
p affine equalities. Therefore, we can express the feasible set as

X = {x ∈ Rn : gTi x ≤ hi, i = 1, . . . ,m; aTj x = bj , j = 1, . . . , p}.

Because the feasible set is the intersection of a finite number of affine equality
and inequality constraints, this set is a polyhedron. If the feasible set is bounded,
then it is a polytope. If the feasible set is a general polyhedron, then the optimal
solution (if any exists) lies on the boundary of the feasible set. If the feasible
set is a polytyope, then the optimal value is attained at a vertex of the feasible
set. Note that, if the optimal value is attained at multiple vertices, then it is
also achieved at any point in the convex hull of these vertices.

5.2 Linear Program Duality

5.2.1 Lagrange Dual Problem
The Lagrangian for a general linear program can be expressed as

L(x,λ,ν) = cTx+ d+ aT (Gx− h) + νT (Ax− b)
= (c+GTλ+ATν)Tx+ (d− hTλ− bTν).

Recall that the dual function is defined as

g(λ,ν) = min
x∈D

L(x,λ,ν).

If the expression (c+GTλ+ATν) is non-zero, then we can choose x such that
the minimum of the Lagrangian is −∞. Therefore, the dual function is

g(λ,ν) =

{
(d− hTλ− bTν) if (c+GTλ+ATν) = 0m

−∞ otherwise
.
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We can then express the dual problem for a general linear program as

d∗ = max
λ,ν

− hTλ− bTν + d

s.t. GTλ+ATν + c = 0n

λ ≥ 0m

Notice that this dual problem is also a linear program.

5.2.2 Dual of the Dual
The dual problem from the previous section can be equivalently expressed as

−d∗ = min
λ,ν

hTλ+ bTν − d

s.t. GTλ+ATν + c = 0n

λ ≥ 0m

The Lagrangian for this problem can be expressed as

L(λ,ν,α,β) = (hTλ+ bTν − d)−αTλ+ βT (GTλ+ATν + c)

= (h−α+Gβ)Tλ+ (b+Aβ)Tν + (−d+ cTβ).

Again, recall that the dual function is defined such that

g(α,β) = min
λ,ν
L(λ,ν,α,β).

If the expression (h − α + Gβ) is non-zero, then we can choose λ such that
the minimum of the Lagrangian is −∞. Similarly, if the expression (b +Aβ)
is non-zero, then we can choose ν such that the minimum of the Lagrangian is
−∞. Therefore, the dual function can be expressed as

g(α,β) =

{
(cTβ − d) if (h−α+Gβ) = 0m, (b+Aβ) = 0p

−∞ otherwise
.

Now we can express the dual of the dual for a general linear program as

−dd∗ = max
α,β

cTβ − d

s.t. h−α+Gβ = 0m

b+Aβ = 0p

α ≥ 0m

Combining the first and third constraint, we can write this problem as

−dd∗ = max
β

cTβ − d

s.t. Gβ + h ≥ 0m

Aβ + b = 0p
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If we replace the variable β with −x and convert the maximization problem to
a minimization one, the dual of the dual of the linear program is given by

dd∗ = min
x
cTx+ d

s.t. Gx ≤ h
Ax = b

Now we can see that the dual of the dual of a linear program is the same as the
primal linear program in general form. This implies that strong duality holds if
Slater’s condition holds for either the primal or dual problem. Because all of the
constraints in both the primal and dual problem are affine, Slater’s condition
says that strong duality holds unless both the primal and dual are infeasible.

5.3 Converting Problems to Linear Programs

5.3.1 General Technique
Suppose we have an optimization problem of the form

p∗ = min
x∈Rn

f(x)T1m + g(x),

where f : Rn → Rm and g : Rn → R. We can reformulate this problem as

p∗ = min
x,z,t

zT1m + t

s.t. zi ≥ fi(x), i = 1, . . . ,m

t ≥ g(x)

In some cases, these new constraints can be written as affine constraints, which
allows us to express the original optimization problem as a linear program.

5.3.2 Maximum Functions
Consider an optimization problem of the form

p∗ = min
x∈Rn

{
max

i=1,...,n
xi

}
.

We can equivalently express this problem as

p∗ = min
x,t

t

s.t. t ≥ max
i=1,...,n

xi

In order to express this problem as linear problem, we notice that if t is greater
than or equal to the maximum value of {x1, . . . ,xn}, then it must be greater
than or equal to all xi. This allows us to express the problem as

p∗ = min
x,t

t

s.t. t ≥ xi, i = 1, . . . , n
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5.3.3 Minimum Functions
Similarly, consider an optimization problem of the form

p∗ = min
x∈Rn

{
− min
i=1,...,n

xi

}
.

We can equivalently express this problem as

p∗ = min
x,t
− t

s.t. − t ≥ − min
i=1,...,n

xi

This problem is also equivalent to

p∗ = min
x,t
− t

s.t. t ≤ min
i=1,...,n

xi

In order to express this problem as linear problem, we notice that if t is less
than or equal to the minimum value of {x1, . . . , xn}, then it must be less than
or equal to all xi. This allows us to express the problem as

p∗ = min
x,t
− t

s.t. t ≤ xi, i = 1, . . . , n

5.3.4 Absolute Value Function
Consider an optimization problem of the form

p∗ = min
x∈Rn

n∑
i=1

|xi|

We can equivalently express this problem as

p∗ = min
x,z

n∑
i=1

zi

s.t. zi ≥ |xi|, i = 1, . . . , n

In order to express this problem as linear problem, we notice that if zi is greater
than or equal to the absolute value of xi, then it must be greater than or equal
to both xi and −xi. This allows us to express the problem as

p∗ = min
x,z

n∑
i=1

zi

s.t. zi ≥ xi, i = 1, . . . , n

zi ≥ −xi, i = 1, . . . , n
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To see why the two constraints, zi ≥ xi and zi ≥ −xi, are equivalent to the
single constraint, zi ≥ |xi|, we can draw these three sets on a number line. Notice
that if we instead had the constraint zi ≤ |xi|, the constraint set would not be
convex, so we could not express an optimization problem with this constraint
as a linear program. Figure 5.1 helps to illustrate this point.

Figure 5.1: The top image shows that the set |xi| ≤ zi can be
expressed as the union of the two sets: xi ≥ −zi and xi ≤ zi.
The image on the bottom shows that the set |xi| ≥ zi is not
convex and cannot be expressed as two affine constraints.
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Chapter 6

Quadratic Programs (QPs)

6.1 Overview of Quadratic Programs

6.1.1 Common Form
When the objective function of an optimization problem is a convex quadratic
function and the constraint functions are all affine, the problem is called a
quadratic program (QP). Note that quadratic functions are not necessarily
convex, and we restrict our definition of quadratic programs to problems whose
objective functions are convex quadratics. The general form of a QP is

p∗ = min
x∈Rn

1

2
xTHx+ cTx+ d

s.t. Gx ≤ h
Ax = b

where H ∈ Sn+, c ∈ Rn, d ∈ R, G ∈ Rm×n, h ∈ Rm, A ∈ Rp×n, b ∈
Rp. Note that the constant d is sometimes omitted because it does not affect
the optimal set. As an additional note, the restriction that H is a symmetric
positive semidefinite matrix makes this optimization problem as convex one.
The constraints in this form are a set of m inequalities and p equalities:

G =

g
T
1
...
gTm

 h =

h1...
hm


Gx ≤ h ≡ gTi x ≤ hi, i = 1, . . . ,m

A =

a
T
1
...
aTp

 b =

b1...
bp


Ax = b ≡ aTj x = bj , j = 1, . . . , p
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6.1.2 Optimal Solution
An unconstrained quadratic program has the form

p∗ = min
x∈Rn

1

2
xTHx+ cTx+ d.

To find the optimal value p∗, we can use the following condition of optimality:

∇xf0(x)|x=x̂ = 0

∇x
(1

2
xTHx+ cTx+ d

)∣∣∣
x=x̂

= 0

Hx̂+ c = 0

Because this constraint is simply a linear matrix equation, an optimal solution
exists if and only if c is in the range of H. In general, this solution is given by
x̂ = −H†c. Plugging in this optimal solution, we find that the optimal value is

p∗ = f0(x̂)

=
1

2
x̂THx̂+ cT x̂+ d

=
1

2
(−H†c)TH(−H†c) + cT (−H†c) + d

=
1

2
cTH†HH†c− cTH†c+ d

=
1

2
cTH†c− cTH†c+ d

= −1

2
cTH†c+ d

Now we see that the optimal value of an unconstrained quadratic program is

p∗ =

{
− 1

2c
TH†c+ d if c ∈ R(H)

−∞ otherwise
.

If H is actually a positive definite matrix, then it is invertible, and we can
replace H† with H−1. We also no longer need to write the restriction that c is
in the range space of H because R(H) is now the Euclidean space, Rn.

6.2 Quadratic Program Duality

6.2.1 Lagrange Dual Problem
The Lagrangian for a general quadratic program can be expressed as

L(x,λ,ν) =
1

2
xTHx+ cTx+ d+ aT (Gx− h) + νT (Ax− b)

=
1

2
xTHx+ (c+GTλ+ATν)Tx+ (d− hTλ− bTν).
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Recall that the dual function is defined as

g(λ,ν) = min
x∈D

L(x,λ,ν).

Because the Lagrangian is a quadratic function, we can use the condition of
optimality for an unconstrained problem with a differentiable objective to write

∇xL(x,λ,ν)|x=x̂ = 0

Hx̂+ (c+GTλ+ATν) = 0

If (c + GTλ + ATν) is in the range of H, then x̂ = −H†(c + GTλ + ATν).
Plugging in this expression for x̂, we find that, under this condition,

g(λ,ν) =
1

2
x̂THx̂+ (c+GTλ+ATν)T x̂+ (d− hTλ− bTν)

= −1

2
(c+GTλ+ATν)TH†(c+GTλ+ATν) + (d− hTλ− bTν).

If (c+GTλ+ATν) is in the range ofH, then, by definition, there exists a vector
z such that (c +GTλ +ATν) = Hz. Plugging in Hz for (c +GTλ +ATν)
in our previous expression of the dual function, we get

g(λ,ν) = −1

2
(Hz)TH†(Hz) + (d− hTλ− bTν)

= −1

2
zTHH†Hz + (d− hTλ− bTν)

= −1

2
zTHz + (d− hTλ− bTν)

We can now write a complete expression for the dual function:

g(λ,ν) =

{
− 1

2z
THz + (d− hTλ− bTν) if (c+GTλ+ATν) = Hz

−∞ otherwise

Now we can then express the dual problem for the quadratic program as

d∗ = max
z,λ,ν

− 1

2
zTHz − hTλ− bTν + d

s.t. Hz = GTλ+ATν + c

λ ≥ 0m

Notice that this dual problem is also a quadratic program. If H is actually a
positive definite matrix, then it is invertible, and we can replace H† with H−1.
We also no longer need to write the restriction that (c+GTλ+ATν) is in the
range space ofH because R(H) = Rn. For this case, the dual problem becomes

d∗ = max
z,λ,ν

− 1

2
(GTλ+ATν + c)TH−1(GTλ+ATν + c)− hTλ− bTν + d

s.t. λ ≥ 0m

Note that this expression of the dual problem is still a quadratic program.
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6.2.2 Dual of the Dual
The dual problem from the previous section can be equivalently expressed as

−d∗ = min
z,λ,ν

1

2
zTHz + hTλ+ bTν − d

s.t. Hz = GTλ+ATν + c

λ ≥ 0m

The Lagrangian for this problem can be expressed as

L(z,λ,ν,α,β) =
(1

2
zTHz + hTλ+ bTν − d

)
−αTλ+ βT (GTλ+ATν + c−Hz)

=
1

2
zTHz − (Hβ)Tz + (h−α+Gβ)Tλ+ (b+Aβ)Tν + (−d+ cTβ).

Again, recall that the dual function is defined such that

g(α,β) = min
z,λ,ν

L(z,λ,ν,α,β).

If the expression (h − α + Gβ) is non-zero, then we can choose λ such that
the minimum of the Lagrangian is −∞. Similarly, if the expression (b +Aβ)
is non-zero, then we can choose ν such that the minimum of the Lagrangian is
−∞. Therefore, we will assume for now that both expressions are equal to zero,
leaving us with the following expression for the Lagrangian:

L(z,λ,ν,α,β) =
1

2
zTHz − (Hβ)Tz + (−d+ cTβ)

Because the Lagrangian is a convex quadratic, we can use the condition of
optimality for an unconstrained problem with a differentiable objective to write

∇xL(z,λ,ν,α,β)|z=ẑ = 0

Hẑ −Hβ = 0

The vector Hβ is clearly in the range of H, so ẑ = H†Hβ. Plugging this
expression for ẑ into the Lagrangian, we get

g(α,β) =
1

2
ẑTHẑ − (Hβ)T ẑ + (−d+ cTβ)

=
1

2

(
H†Hβ

)T
H
(
H†Hβ

)
− (Hβ)T

(
H†Hβ

)
+ (−d+ cTβ)

=
1

2
βTHβ − βTHβ + (−d+ cTβ)

= −1

2
βTHβ + cTβ − d

We can now write a complete expression for the dual function:

g(α,β) =

{
− 1

2β
THβ + cTβ − d if (h−α+Gβ) = 0m, (b+Aβ) = 0p

−∞ otherwise
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Now we can express the dual of the dual for a quadratic program as

−dd∗ = max
α,β

− 1

2
βTHβ + cTβ − d

s.t. h−α+Gβ = 0m

b+Aβ = 0p

α ≥ 0m

Combining the first and third constraint, we can write this problem as

−dd∗ = max
β
− 1

2
βTHβ + cTβ − d

s.t. Gβ + h ≥ 0m

Aβ + b = 0p

If we replace the variable β with −x and convert the maximization problem to
a minimization one, the dual of the dual of a quadratic program is given by

dd∗ = min
x

1

2
xTHx+ cTx+ d

s.t. Gx ≤ h
Ax = b

Now we can see that the dual of the dual of a quadratic program is the same
as the primal quadratic program. This implies that strong duality holds if
Slater’s condition holds for either the primal or dual problem. Because all of
the constraints in both the primal and dual problem are affine, Slater’s condition
says that strong duality holds unless both the primal and dual are infeasible.
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Chapter 7

Quadratically Constrained
Quadratic Programs
(QCQPs)

7.1 Overview of QCQPs
When the objective and inequality constraint functions of an optimization prob-
lem are convex quadratic functions and the equality constraint functions are
affine, the problem is called a quadratically constrained quadratic pro-
gram (QCQP). Note that quadratic functions are not necessarily convex, and
we restrict our definition of QCQPs to problems whose objective and inequality
constraint functions are convex quadratics. Additionally, if we were to allow the
equality constraint functions to also be convex quadratics, we would no longer
have a convex optimization problem, so we restrict the equality constraint func-
tions to be affine. The general form of a QCQP is

p∗ = min
x∈Rn

1

2
xTH0x+ cT0x+ d0

s.t.
1

2
xTHix+ cTi x+ di ≤ 0, i = 1, . . . ,m

Ax = b

where A ∈ Rp×n, b ∈ Rp, Hi ∈ Sn+, ci ∈ Rn, and di ∈ R for i = 0, . . . ,m. Note
that the constant d0 is sometimes omitted because it does not affect the optimal
set. As an additional note, the restriction that Hi is a positive semidefinite
symmetric matrix for i = 0, . . . ,m makes this optimization problem convex.
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7.2 QCQP Duality
The Lagrangian for a general QCQP is given bycan be expressed as

L(x,λ,ν) =
1

2
xTH0x+ cT0x+ d0 +

m∑
i=1

λi

(1

2
xTHix+ cTi x+ di

)
+ νT (Ax− b)

=
1

2
xT

(
H0 +

m∑
i=1

λiHi

)
x+

(
c0 +

m∑
i=1

λici +ATν

)T
x+

(
d0 +

m∑
i=1

λidi − bTν

)
.

To simplify this expression, we will define the following matrices and vectors:

H(λ) := H0 +

m∑
i=1

λiHi

c(λ,ν) := c0 +

m∑
i=1

λici +ATν

d(λ,ν) := d0 +

m∑
i=1

λidi − bTν

This allows us to express the Langrangian for the QCQP as

L(x,λ,ν) =
1

2
xTH(λ)x+ c(λ,ν)Tx+ d(λ,ν).

Recall that the dual function is defined as

g(λ,ν) = min
x∈D

L(x,λ,ν).

Note that becauseH(λ) is the linear combination of symmetric positive semidef-
inite matrices and λi is non-negative for i = 1, . . . ,m, H(λ) is symmetric and
positive semidefinite. Therefore, the Lagrangian is a convex quadratic func-
tion, which means we can use the condition of optimality for an unconstrained
problem with a differentiable objective to write

∇xL(x,λ,ν)|x=x̂ = 0

H(λ)x̂+ c(λ,ν) = 0

If c(λ,ν) is in the range of H(λ), then x̂ = −H(λ)†c(λ,ν). Plugging in this
expression for x̂, we find that, under this condition,

g(λ,ν) =
1

2
x̂TH(λ)x̂+ c(λ,ν)T x̂+ d(λ,ν)

=
1

2

(
−H(λ)†c(λ,ν)

)T
H(λ)

(
−H(λ)†c(λ,ν)

)
+ c(λ,ν)T

(
−H(λ)†c(λ,ν)

)
+ d(λ,ν)

=
1

2
c(λ,ν)TH(λ)†c(λ,ν)

)
− c(λ,ν)TH(λ)†c(λ,ν) + d(λ,ν)

= −1

2
c(λ,ν)TH(λ)†c(λ,ν) + d(λ,ν)
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If c(λ,ν) is in the range of H(λ), then by the definition of the range space, there
exists a vector z such that c(λ,ν) = H(λ)z. Plugging in H(λ)z for c(λ,ν) in
our previous expression of the dual function, we get

g(λ,ν) = −1

2

(
H(λ)z

)T
H(λ)†

(
H(λ)z

)
+ d(λ,ν)

= −1

2
zTH(λ)z + d(λ,ν)

We can now write a complete expression for the dual function:

g(λ,ν) =

{
− 1

2z
TH(λ)z + d(λ,ν) if c(λ,ν) = H(λ)z

−∞ otherwise
.

Now we can then express the dual problem for a QCQP as

d∗ = max
z,λ,ν

− 1

2
zTH(λ)z + d(λ,ν)

s.t. H(λ)z = c(λ,ν)

λ ≥ 0m

If H0 is positive definite or Hi is positive definite for at least one value of
i ∈ {1, . . . ,m} for which λi > 0, then H(λ) is a positive definite matrix. This
implies that H(λ) is invertible, so we can replace H(λ)† with H(λ)−1. We also
no longer need to write the restriction that c(λ,ν) is in the range space of H(λ)
because R(H(λ)) = Rn. For this case, the dual problem becomes

d∗ = max
z,λ,ν

− 1

2
c(λ,ν)TH(λ)−1c(λ,ν) + d(λ,ν)

s.t. λ ≥ 0m

7.3 Quadratic Constraints & Ellipsoids
From our definition of QCQPs, we can see that each inequality constraint is the
zero sublevel set of a quadratic function. We express this sublevel set as

L−0 (fi) =
{
x ∈ Rn :

1

2
xTHix+ cTi x+ di ≤ 0

}
.

Because we assume that Hi ∈ Sn+, this set is convex, making it a (possibly
unbounded) ellipsoid. WhenHi � 0 and di ≤ 1

2c
T
i H

−1
i ci, this set is a bounded

and full-dimensional ellipsoid, which can be expressed as

L−0 (fi) =
{
x ∈ Rn :

1

2
(x− x̂i)THi(x− x̂i) ≤ ri

}
,

where x̂i = −H−1i ci is the center of the ellipsoid and ri = 1
2c
T
i H

−1
i ci − di is

the radius of the ellipsoid. Note that if we define Pi := 2H−1i , then we can
represent this ellipsoid in a more common form:

L−0 (fi) =
{
x ∈ Rn : (x− x̂i)TP−1i (x− x̂i) ≤ ri

}
.
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Geometric Programs (GPs)

8.1 Monomials & Posynomials

8.1.1 Definition of Monomials & Posynomials
A positive monomial is a function h : Rn++ → R that is defined as

h(x) = cxa = c

n∏
i=1

xaii ,

where c ∈ R++ and a ∈ Rn has components ai for i = 1, . . . , n. A posynomial
is a function f : Rn++ → R that is defined as the non-negative linear combination
of positive monomials, which we can express as

f(x) =

k∑
i=1

cix
ai =

k∑
i=1

ci

n∏
j=1

x
aij
j ,

where ci ∈ R++ and ai ∈ Rn has components aij for i = 1, . . . , k and j =
1, . . . , n. A generalized posynomial is a function obtained from posynomials
via addition, multiplication, pointwise maximum, or a constant power.

8.1.2 Convex Representation
Monomials, posynomials, and generalized posynomials are not convex functions,
but we can obtain a convex representation of these functions via a change of
variables and logarithmic transformation.

Monomials

If we define a new variable y ∈ Rn such that yi = ln(xi) for i = 1, . . . , n and a
new function h̃ : Rn → R such that h̃(·) = h(e·), then we can express h̃(y) as

h̃(y) = h(ey) = c

n∏
i=1

eaiyi = c exp

(
n∑
i=1

aiyi

)
= cea

Ty.
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If we define the constant b = ln(c), then we can express this function as

h̃(y) = ebea
Ty = ea

Ty+b.

Taking the logarithm of this function, we are left with an affine function:

ln
(
h̃(y)

)
= ln

(
ea

Ty+b
)

= aTy + b

Recall that all affine functions are convex, so ln
(
h̃(·)

)
is a convex function, even

though the monomial h(·) is not a convex function.

Posynomials

If we define new variable y ∈ Rn such that yi = ln(xi) for i = 1, . . . , n and a
new function f̃ : Rn → R such that f̃(·) = f(e·), then we can express f̃(y) as

f̃(y) = f(ey) =

k∑
i=1

ci

n∏
j=1

eaijyj =

k∑
i=1

ci exp

(
n∑
i=1

aijyj

)
=

k∑
i=1

cie
aT

i y.

If we define bi = ln(ci) for i = 1, . . . , k, then we can express this function as

f̃(y) =

k∑
i=1

ebiea
T
i y =

k∑
i=1

ea
T
i y+bi .

Taking the logarithm of this function, we are left with a log-sum-exp function:

ln
(
f̃(y)

)
= ln

(
k∑
i=1

ea
T
i y+bi

)
= lse(Ay + b), where

A =

— aT —
...

— aT —

 ∈ Rk×n and b =

b1...
bk

 ∈ Rk.

When discussing convex functions, we said that the log-sum-exp function is con-
vex on Rn. We also said that convexity is preserved under affine transformation.
Therefore, the log-sum-exp function of an affine combination is convex. This
means that ln

(
f̃(y)

)
is a convex function, even though the posynomial is not.

Generalized Posynomials

The is no general method to obtain a convex representation of a generalized
posynomial. If we have an inequality in terms of a generalized posynomial, then
we can introduce new variables to transform the single generalized posynomial
ineqality into multiple posynomial/monomial inequalities. We can then find the
convex representation of these functions as shown previously.
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8.2 Geometric Programs (GPs)

8.2.1 Overview of Geometric Programs
A geometric program (GP) is an optimization problem whose objective and
inequality constraint functions are posynomials and whose equality constraint
functions are positive monomials. A geometric program has the general form

p∗ = min
x∈Rn

++

f0(x)

s.t. fi(x) ≤ 1, i = 1, . . . ,m

hj(x) = 1, j = 1, . . . , p

where fi are posynomials and hj are positive monomials for i = 0, . . . ,m and
j = 1, . . . , p. In standard form, a geometric program can be expressed as

p∗ = min
x∈Rn

++

M0∑
k=1

αk0x
ak0

s.t.
Mi∑
k=1

αkix
aki ≤ 1, i = 1, . . . ,m

βjx
bj = 1, j = 1, . . . , p

where αki, βj ∈ R++ and aki, bj ∈ Rn for k = 1, . . . ,Mi, i = 0, . . . ,m, and
j = 1, . . . , p. In standard form, a geometric program is not a convex optimiza-
tion problem. However, using the techniques for representing monomials and
posynomials as convex functions, we can write this geometric program as an
equivalent convex optimization problem:

p∗ = min
y∈Rn

lse(A0y +α0)

s.t. lse(Aiy +αi) ≤ 0, i = 1, . . . ,m

By + β = 0

Note that I have implicitly defined the following matrices and vectors:

Ai :=

 — aT1i —
...

— aTMii
—

 ∈ RMi×n αi :=

 α1i

...
αMii

 ∈ RMi i = 0, . . . ,m

B :=

— bT1 —
...

— bTp —

 ∈ Rp×n β :=

β1...
βp

 ∈ Rp
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8.2.2 Overview of Generalized GPs
A generalized geometric program (GGP) is an optimization problem whose
objective and inequality constraint functions are generalized posynomials and
whose equality constraint functions are positive monomials. A generalized geo-
metric program has the general form

p∗ = min
x∈Rn

++

f0(x)

s.t. fi(x) ≤ 1, i = 1, . . . ,m

hj(x) = 1, j = 1, . . . , p

where fi are generalized posynomials and hj are monomials for i = 0, . . . ,m
and j = 1, . . . , p. Often, we can transform a generalized geometric program into
a geometric program by introducing slack variables.

Example: Consider the generalized GP given by

p∗ = min
x,y,z

max(x, y)

s.t. x2 + y ≤ √xyz

max(y, z) ≤ 1√
x+ z

xyz = 1

We can transform this problem into a standard GP by first introducing a slack
variable t, leaving us with the following problem:

p∗ = min
x,y,z,t

t

s.t. max(x, y) ≤ t
x2 + y ≤ √xyz

max(y, z) ≤ 1√
x+ z

xyz = 1

Now we will divide each side of the inequality constraints by the expression on
the right hand side of the inequality, leaving us with

p∗ = min
x,y,z,t

t

s.t. t−1 max(x, y) ≤ 1

(xyz)−1/2(x2 + y) ≤ 1(√
x+ z

)
max(y, z) ≤ 1

xyz = 1
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Now we can simplify these constraints in the following way:

p∗ = min
x,y,z,t

t

s.t. max(xt−1, yt−1) ≤ 1

x3/2y−1/2z−1/2 + x−1/2y1/2z−1/2 ≤ 1

max(x1/2y + yz1/2, x1/2z + z3/2) ≤ 1

xyz = 1

We can then express the first and third constraints as sets of two constraints:

p∗ = min
x,y,z,t

t

s.t. xt−1 ≤ 1

yt−1 ≤ 1

x3/2y−1/2z−1/2 + x−1/2y1/2z−1/2 ≤ 1

x1/2y + yz1/2 ≤ 1

x1/2z + z3/2 ≤ 1

xyz = 1

Now our objective function is a monomial, our inequality constraints are either
monomials or posynomials, and the equality constraint is a monomial. There-
fore, this is now a standard geometric program.
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Chapter 9

Second-Order Cone Programs
(SOCPs)

9.1 Second-Order Cone (SOC)

9.1.1 Definition of a Second-Order Cone
A second-order cone (SOC) in R3 is defined as the set

K2 =

{
(x, t) ∈ R2 × R :

√
x21 + x22 ≤ t

}
.

This set looks like a geometric cone, as shown in figure 9.1.

Figure 9.1: The blue shaded region is the SOC in R3.

An (n+ 1)-dimensional second-order cone (SOC) is defined as the set

Kn =

{
(x, t) ∈ Rn × R : ||x||2 ≤ t

}
.

Note that an SOC is a type of convex cone.

66



CHAPTER 9. SECOND-ORDER CONE PROGRAMS (SOCPS)

9.1.2 Hyperbolic Constraints
The rotated second-order cone in Rn+2 is defined as the set

Kr
n =

{
(x, y, z) ∈ Rn × R× R : xTx ≤ yz, y ≥ 0, z ≥ 0

}
.

A constraint of the form xTx ≤ yz, y ≥ 0, z ≥ 0 is referred to as a hyperbolic
constraint, which can equivalently be expressed as the SOC constraint∣∣∣∣∣∣∣∣[ 2x

y − z

]∣∣∣∣∣∣∣∣
2

≤ y + z.

To see how these two constraints are equivalent, first notice that this SOC
constraint is equivalent to the following two constraints:∣∣∣∣∣∣∣∣[ 2x

y − z

]∣∣∣∣∣∣∣∣2
2

≤ (y + z)2 and (y + z) ≥ 0.

The first of these two constraints is then equivalent to the following:

(2x)T (2x) + (y − z)2 ≤ (y + z)2

4xTx+ y2 − 2yz + z2 ≤ y2 + 2yz + z2

4xTx ≤ 4yz

xTx ≤ yz

Because the inner product of two vectors is necessarily non-negative, this also
implies that yz ≥ 0. Therefore, the given SOC constraint is equivalent to

(y + z) ≥ 0, xTx ≤ yz, yz ≥ 0.

We can equivalently express these three constraints as

xTx ≤ yz, y ≥ 0, z ≥ 0.

Now we can see that the SOC and hyperbolic constraints are in fact equivalent.

9.2 Second-Order Cone Programs (SOCPs)

9.2.1 Overview of SOCPs
A second-order cone program (SOCP) is an optimization problem whose
objective function and equality constraint functions are affine and whose in-
equality constraint functions are second-order cones.
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Inequality Form

In inequality form, a second-order cone program can be expressed as

p∗ = min
x∈Rn

cTx+ d

s.t. ||Aix+ bi||2 ≤ cTi x+ di, i = 1, . . . ,m

Fx = g

where c ∈ Rn, d ∈ R, F ∈ Rp×n, g ∈ Rp, Ai ∈ Rmi×n, bi ∈ Rmi , ci ∈ Rn, and
di ∈ R for i = 1, . . . ,m.

Conic Form

We can also express this SOCP in conic form as

p∗ = min
x∈Rn

cTx+ d

s.t. (Aix+ bi, c
T
i x+ di) ∈ Kn, i = 1, . . . ,m

Fx = g

where c ∈ Rn, d ∈ R, F ∈ Rp×n, g ∈ Rp, Ai ∈ Rmi×n, bi ∈ Rmi , ci ∈ Rn, and
di ∈ R for i = 1, . . . ,m.

9.2.2 SOCP Duality
The primal problem for an SOCP in standard inequality form is

p∗ = min
x∈Rn

cTx+ d

s.t. ||Aix+ bi||2 ≤ cTi x+ di, i = 1, . . . ,m

Fx = g

The Lagrangian for this problem can be expressed as

L(x,λ,ν) = cTx+ d+

m∑
i=1

λi
(
||Aix+ bi||2 − cTi x− di

)
+ νT (Fx− g)

We can then express the primal problem as

p∗ = min
x∈Rn

max
λ≥0m

ν∈Rp

L(x,λ,ν)

= min
x∈Rn

max
λ≥0m

ν∈Rp

cTx+ d+

m∑
i=1

λi
(
||Aix+ bi||2 − cTi x− di

)
+ νT (Fx− g)

= min
x∈Rn

max
||ui||2≤λi

ν∈Rp

cTx+ d+

m∑
i=1

(
uTi (Aix+ bi)− λi(cTi x+ di)

)
+ νT (Fx− g)
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The dual problem can then be expressed as

d∗ = max
||ui||2≤λi

ν∈Rp

min
x∈Rn

cTx+ d+

m∑
i=1

(
uTi (Aix+ bi)− λi(cTi x+ di)

)
+ νT (Fx− g)

= max
||ui||2≤λi

ν∈Rp

min
x∈Rn

(
c+ F Tν +

m∑
i=1

(AT
i ui − λici)

)T
x+

(
d− gTν +

m∑
i=1

(bTi ui − diλi)
)

The inside minimization problem is simply a linear program, which means we
can express the optimal value of this problem as

min
x∈Rn

{. . .} =

{(
d− gTν +

∑m
i=1(bTi ui − diλi)

)
if
(
c+ F Tν +

∑m
i=1(AT

i ui − λici)
)

= 0

−∞ otherwise

The outer maximization problem selects the maximum of these two cases, so
the dual problem can be expressed as

d∗ = max
u,λ,ν

m∑
i=1

(bTi ui − diλi)− gTν + d

s.t.
m∑
i=1

(AT
i ui − λici) + c+ F Tν = 0

||ui||2 ≤ λi, i = 1, . . . ,m

Now we can see that the dual problem is also an SOCP.

9.3 Converting Problems to SOCPs
As discussed in section 3.3, linear programs (LPs) are a subset of convex quadratic
programs (QPs), which are a subset of convex quadratically constrained quadratic
programs (QCQPs), which are a subset of second-order cone programs (SOCPs).
Because all of these types of convex optimization problems are a subset of
SOCPs, we can convert each class of problem to an SOCP.

9.3.1 Linear Programs (LPs)
Recall that a linear program (LP) in standard form can be expressed as

p∗ = min
x∈Rn

cTx+ d

s.t. Gx ≤ h
Ax = b

where c ∈ Rn, d ∈ R, G ∈ Rm×n, h ∈ Rm, A ∈ Rp×n, and b ∈ Rp. If we assume
the rows of G are given by gTi and the elements of h are hi for i = 1, . . . ,m,
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then this problem can be cast to a second-order cone program (SOCP) as

p∗ = min
x∈Rn

cTx+ d

s.t. gTi x ≤ hi, i = 1, . . . ,m

Ax = b

9.3.2 Quadratic Programs (QPs)
Recall that quadratic program (QP) in standard form can be expressed as

p∗ = min
x∈Rn

1

2
xTHx+ cTx+ d

s.t. Gx ≤ h
Ax = b

where H ∈ Sn+, c ∈ Rn, d ∈ R, G ∈ Rm×n, h ∈ Rm, A ∈ Rp×n, and b ∈ Rp.
This problem can be cast to a second-order cone program (SOCP) by first
introducing a slack variable t for the quadratic term in the objective:

p∗ = min
x∈Rn,t≥0

t+ cTx+ d

s.t.
1

2
xTHx ≤ t

Gx ≤ h
Ax = b

The first constraint in the above problem is a hyperbolic constraint, which
can be expressed as

(
H1/2x

)T (
H1/2x

)
≤ 2t. This allows us to express this

optimization problem as the following SOCP:

p∗ = min
x∈Rn,t≥0

cTx+ d+ t

s.t.
∣∣∣∣∣∣∣∣[2H1/2x

t− 2

]∣∣∣∣∣∣∣∣
2

≤ t+ 2

gTi x ≤ hi, i = 1, . . . ,m

Ax = b

9.3.3 Quadratically Constrained Quadratic Programs
(QCQPs)

Recall that a QCQP in standard form can be expressed as

p∗ = min
x∈Rn

1

2
xTH0x+ cT0x+ d0

s.t.
1

2
xTHix+ cTi x+ di ≤ 0, i = 1, . . . ,m

Ax = b
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where A ∈ Rp×n, b ∈ Rp, Hi ∈ Sn+, ci ∈ Rn, and di ∈ R for i = 0, . . . ,m. This
problem can be cast to a second-order cone program (SOCP) by first introducing
a slack variable t for the quadratic term in the objective:

p∗ = min
x∈Rn,t≥0

t+ cT0x+ d0

s.t.
1

2
xTH0x ≤ t

1

2
xTHix+ cTi x+ di ≤ 0, i = 1, . . . ,m

Ax = b

The first constraint above is a hyperbolic constraint, which can be expressed as(
H

1/2
0 x

)T (
H

1/2
0 x

)
≤ 2t. The second set of constraints are also a hyperbolic

constraints, which can be expressed as
(
H

1/2
i x

)T (
H

1/2
i x

)
≤ 2(−cTi x − di).

This allows us to express this optimization problem as the following SOCP:

p∗ = min
x∈Rn,t≥0

cT0x+ d0 + t

s.t.
∣∣∣∣∣∣∣∣[2H1/2

0 x
t− 2

]∣∣∣∣∣∣∣∣ ≤ t+ 2∣∣∣∣∣∣∣∣[ 2H
1/2
i x

−cTi x− di − 2

]∣∣∣∣∣∣∣∣ ≤ −cTi x− di + 2, i = 1, . . . ,m

Ax = b
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Semidefinite Programs
(SDPs)

10.1 Linear Matrix Inequalities (LMIs)

10.1.1 Overview of LMIs
Given a set of symmetric matrices F0,F1, . . . ,Fm ∈ Sn, a linear matrix pen-
cil is an affine subspace of the vector space Sn, which is defined as

L(x) =

{
F (x) ∈ Sn : F (x) = F0 +

m∑
i=1

xiFi, x ∈ Rm
}
.

Given a set of coefficient matrices F0,F1, . . . ,Fm ∈ Sn, a linear matrix in-
equality (LMI) is a constraint on a vector x ∈ Rm of the form

F (x) = F0 +

m∑
i=1

xiFi � 0.

A spectrahedron is a convex set that is composed of the points x ∈ Rm that
satisfy a linear matrix inequality. In general, a spectrahedron has the form

X =
{
x ∈ Rm : F (x) � 0

}
.

10.1.2 LMI Manipulation
If we have N linear matrix inequalities F1(x) � 0, F2(x) � 0, . . . , FN (x) � 0,
we can express them as a single linear matrix inequality in the following way:

F (x) =


F1(x) 0 . . . 0

0 F2(x) . . . 0
...

...
. . .

...
0 0 . . . FN (x)

 � 0
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Given matrices A(x) ∈ Sn, B(x) ∈ Sm, and X(x) ∈ Rn×m, we can use the
Schur complements to turn inequality constraints of a particular form into linear
matrix inequalities (LMIs). If we assume B(x) � 0, we can express an inequality
constraint of the form A(x)−X(x)B−1(x)X(x)T � 0 as the following LMI:[

A(x) X(x)
X(x)T B(x)

]
� 0.

Similarly, if we assume A(x) � 0, then we can express an inequality constraint
of the form B(x)−X(x)TA−1(x)X(x) � 0 as the following LMI:[

A(x) X(x)
X(x)T B(x)

]
� 0.

10.2 Semidefinite Programs (SDPs)

10.2.1 Common Forms
A semidefinite program (SDP) is a convex optimization problem that aims
to minimize an affine objective function under an LMI constraint. We also allow
for affine equality constraints in our SDP formulation because these constraints
can easily be converted to LMIs. There are two general forms of SDPs.

Inequality Form

In inequality form, an SDP can be expressed as

p∗ = min
x∈Rm

cTx+ d

s.t. F0 +

m∑
i=1

xiFi � 0

where c ∈ Rm, d ∈ R, and Fi ∈ Sn for i = 1, . . . ,m. Note that the constant d
is sometimes omitted because it does not affect the optimal set.

Conic Form

In conic form, an SDP can be expressed as

p∗ = min
X∈Sn

〈C,X〉+ d

s.t. 〈Ai,X〉 = bi, i = 1, . . . ,m

X � 0

where C ∈ Sn, Ai ∈ Sn, and bi ∈ R for i = 1, . . . ,m. Recall that for two m×n
matrices A and B, 〈A,B〉 is the matrix inner product, which is defined as

〈A,B〉 = trace(ATB) =

m∑
i=1

n∑
j=1

AijBij ,

where Aij and Bij are the ijth elements of matrices A and B respectively.
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10.2.2 Transforming Between Forms
Conic to Inequality Form

Consider an SDP in conic form:

p∗ = min
X∈Sn

〈C,X〉

s.t. 〈Ak,X〉 = bk, k = 1, . . . ,m

X � 0

where C ∈ Sn, Ak ∈ Sn, and bk ∈ R for k = 1, . . . ,m. To transform this
problem to inequality form, we can first use the definition of the matrix inner
product to express the original problem as

p∗ = min
X∈Sn

n∑
i=1

n∑
j=1

CijXij

s.t.
m∑
i=1

n∑
j=1

{Ak}ijXij = bk, k = 1, . . . ,m

X � 0

This problem can equivalently be expressed as

p∗ = min
X∈Sn

n∑
i=1

CiiXii +

n∑
i=1

∑
j 6=i

CijXij

s.t. {Ak}iiXii +

n∑
i=1

∑
j 6=i

{Ak}ijXij = bk, k = 1, . . . ,m

X � 0

Let’s define the matrix Eij such that its ijth and jith elements are one and all
other elements are zero. This allows us to express our problem as

p∗ = min
X∈Sn

n∑
i=1

CiiXii +

n∑
i=1

∑
j 6=i

CijXij

s.t. {Ak}iiXii +

n∑
i=1

∑
j 6=i

{Ak}ijXij = bk, k = 1, . . . ,m

n∑
i=1

XiiEii +

n∑
i=1

∑
j 6=i

XijEij � 0

This problem is now an SDP in inequality form. To make this more explicit,
we can replace each of the m equality constraints with a set of two inequality
constraints and write these inequality constraints in LMI form. We can then
combine all of our LMI constraints into a single one.
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Inequality to Conic Form

Consider an SDP in inequality form:

p∗ = min
x∈Rm

cTx

s.t. F (x) � 0

where c ∈ Rm, F (x) = F0 +
∑m
i=1 xiFi, and Fi ∈ Sn for i = 1, . . . ,m. To

transform this problem to standard form, we can first express the vector x as
x = x+ − x−, where x+,x− ≥ 0m, which allows us to express this problem as

p∗ = min
x+,x−

cTx+ − cTx−

s.t. F0 +

m∑
i=1

x+i Fi −
m∑
i=1

x−i Fi � 0

x+, x− ≥ 0m

We can then introduce a slack matrix T ∈ Sn and express this problem as

p∗ = min
x+,x−,T

cTx+ − cTx−

s.t. F0 +

m∑
i=1

x+i Fi −
m∑
i=1

x−i Fi = T

x+, x− ≥ 0m

T � 0

Again, we will define the matrix Eij such that its ijth and jith elements are
one and all other elements are zero. We will also define the following matrices:

X :=

diag(x+)
diag(x−)

T

 and C :=

diag(c)
−diag(c)

0n×n

 .
For 1 ≤ k ≤ n, we will also define the following set of matrices:

Akk :=

diag({F1}kk, . . . , {Fm}kk
)
−diag

(
{F1}kk, . . . , {Fm}kk

)
−Ekk

 .
For 1 ≤ k < l ≤ n, we will define a similar set of matrices:

Akl :=

diag({F1}kl, . . . , {Fm}kl
)
−diag

(
{F1}kl, . . . , {Fm}kl

)
− 1

2Ekl

 .
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By defining these matrices, we can express our problem as

p∗ = min
X∈S2m+n

〈C,X〉

s.t. 〈Akk, X〉 = −{F0}kk, k = 1, . . . , n

〈Akl, X〉 = −{F0}kl, 1 ≤ k < l ≤ n
X � 0

This problem is now an SDP in conic form. Take a moment to convince yourself
that this formulation of the SDP is equivalent to the previous problem.

10.3 SDP Duality

10.3.1 SDP in Inequality Form
The primal problem for an SDP in inequality form is given by

p∗ = min
x∈Rm

cTx

s.t. F0 +

m∑
i=1

xiFi � 0

where c ∈ Rm and Fi ∈ Sn for i = 1, . . . ,m. The dual of this problem is

d∗ = max
Z∈Sn

〈−F0,Z〉

s.t. 〈Fi,Z〉 = ci, i = 1, . . . ,m

Z � 0

Notice the dual problem for an SDP in inequality form is an SDP in conic form.

10.3.2 SDP in Conic Form
The primal problem for an SDP in conic form is given by

p∗ = min
X∈Sn

〈C,X〉

s.t. 〈Ai,X〉 = bi, i = 1, . . . ,m

X � 0

where C ∈ Sn, Ai ∈ Sn, and bi ∈ R for i = 1, . . . ,m. The dual problem is

d∗ = max
z∈Rm

− bTz

s.t. C +

m∑
i=1

ziAi � 0

Notice the dual problem for an SDP in conic form is an SDP in inequality form.

Convex Optimization | S. Pohland



CHAPTER 10. SEMIDEFINITE PROGRAMS (SDPS)

10.3.3 Strong Duality
Whether an SDP is expressed in inequality or conic form, the primal and dual
problem are both SDPs. This implies that strong duality holds if Slater’s condi-
tion holds for either the primal or dual problem. Therefore, if either the primal
or dual problem is strictly feasible, then strong duality holds. If both are strictly
feasible, then the primal and dual optimal sets are non-empty.

10.4 Converting Problems to SDPs
As discussed in section 3.3, linear programs (LPs) are a subset of convex quadratic
programs (QPs), which are a subset of convex quadratically constrained quadratic
programs (QCQPs), which are a subset of second-order cone programs (SOCPs),
which are a subset of semidefinite programs (SDPs). Because all these types of
optimization problems are a subset of SDPs, we can convert each to an SDP.

10.4.1 Linear Programs (LPs)
Recall that a linear program (LP) in standard form can be expressed as

p∗ = min
x∈Rn

cTx+ d

s.t. Gx ≤ h
Ax = b

where c ∈ Rn, d ∈ R, G ∈ Rm×n, h ∈ Rm, A ∈ Rp×n, and b ∈ Rp. This
problem can be cast to a semidefinite program (SDP) as

p∗ = min
x∈Rn

cTx+ d

s.t. diag(h−Gx) � 0

Ax = b

10.4.2 Quadratic Programs (QPs)
Recall that a quadratic program (QP) in standard form can be expressed as

p∗ = min
x∈Rn

1

2
xTHx+ cTx+ d

s.t. Gx ≤ h
Ax = b

where H ∈ Sn+, c ∈ Rn, d ∈ R, G ∈ Rm×n, h ∈ Rm, A ∈ Rp×n, and b ∈ Rp.
This problem can be cast to a semidefinite program (SDP) by first introducing
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a slack variable t for the quadratic term in the objective:

p∗ = min
x∈Rn,t≥0

t+ cTx+ d

s.t. t ≥ 1

2
xTHx

Gx ≤ h
Ax = b

Because H is a positive semidefinite matrix, the matrix product property says
that there exists a matrix W ∈ Rn×r such that H = WW T , where r =
rank(H). This allows us to express the quadratic program as

p∗ = min
x∈Rn,t≥0

t+ cTx+ d

s.t. 2t ≥ (W Tx)T (W Tx)

Gx ≤ h
Ax = b

The first constraint can be expressed as 2t − (W Tx)T I−1r (W Tx) ≥ 0. We
can use Schur complements to express this as a linear matrix inequality, which
allows us to express this optimization problem as the following SDP:

p∗ = min
x∈Rn,t≥0

t+ cTx+ d

s.t.
[
Ir W Tx

xTW 2t

]
� 0

diag(h−Gx) � 0

Ax = b

10.4.3 Quadratically Constrained Quadratic Programs
(QCQPs)

Recall that a QCQP in standard form can be expressed as

p∗ = min
x∈Rn

1

2
xTH0x+ cT0x+ d0

s.t.
1

2
xTHix+ cTi x+ di ≤ 0, i = 1, . . . ,m

Ax = b

where A ∈ Rp×n, b ∈ Rp, Hi ∈ Sn+, ci ∈ Rn, and di ∈ R for i = 0, . . . ,m. This
problem can be cast to a semidefinite program (SDP) by first introducing a slack
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variables ti for the quadratic terms in the objective and inequality constraints:

p∗ = min
x∈Rn, t≥0m+1

t0 + cT0x+ d0

s.t. ti + cTi x+ di ≤ 0, i = 1, . . . ,m

ti ≥
1

2
xTHix, i = 0, . . . ,m

Ax = b

Because Hi is a positive semidefinite matrix, the matrix product property says
there exists a matrixWi ∈ Rn×ri such thatHi = WiW

T
i , where ri = rank(Hi)

for i = 0, . . . ,m. This allows us to express the quadratic program as

p∗ = min
x∈Rn,t≥0m+1

t0 + cT0x+ d0

s.t. ti + cTi x+ di ≤ 0, i = 1, . . . ,m

2ti ≥ (W T
i x)T (W T

i x), i = 0, . . . ,m

Ax = b

The second set of constraints can be expressed as 2ti−(W T
i x)T I−1ri (W T

i x) ≥ 0,
where i = 0, . . . ,m. We can use Schur complements to express these constraint
as linear matrix inequalities, which allows us to express this optimization prob-
lem as the following SDP:

p∗ = min
x∈Rn,t≥0m+1

t0 + cT0x+ d0

s.t.
[
Iri W T

i x
xTWi 2ti

]
� 0, i = 0, . . . ,m

diag(−ti − cTi x− di) � 0, i = 1, . . . ,m

Ax = b

10.4.4 Second-Order Cone Programs (SOCPs)
Recall that an SOCP in inequality form can be expressed as

p∗ = min
x∈Rn

cTx+ d

s.t. ||Aix+ bi||2 ≤ cTi x+ di, i = 1, . . . ,m

Fx = g

where c ∈ Rn, d ∈ R, Ai ∈ Rmi×n, bi ∈ Rmi , ci ∈ Rn, di ∈ R, F ∈ Rp×n,
and g ∈ Rp. This problem can be cast to a semidefinite program (SDP) by first
squaring both sides of the first constraint:

p∗ = min
x∈Rn

cTx+ d

s.t. ||Aix+ bi||22 ≤ (cTi x+ di)
2, i = 1, . . . ,m

Fx = g
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Using properties of norms, the first constraint can be expressed as

(Aix+ bi)
T (Aix+ bi) ≤ (cTi x+ di)

2, i = 1, . . . ,m

(cTi x+ di)
2 − (Aix+ bi)

T (Aix+ bi) ≥ 0, i = 1, . . . ,m

(cTi x+ di)− (cTi x+ di)
−1(Aix+ bi)

T (Aix+ bi) ≥ 0, i = 1, . . . ,m

(cTi x+ di)− (Aix+ bi)
T
(

(cTi x+ di)Imi

)−1
(Aix+ bi) ≥ 0, i = 1, . . . ,m

We can use the Schur complements to express this as a linear matrix inequality,
which allows us to express this optimization problem as the following SDP:

p∗ = min
x∈Rn

cTx+ d

s.t.
[
(cTi x+ di)Imi (Aix+ bi)
(Aix+ bi)

T (cTi x+ di)

]
� 0, i = 1, . . . ,m

Fx = g

10.4.5 Non-Convex Quadratic Problems
A non-convex quadratically constrained quadratic problem is an optimization
problem whose objective, inequality constraint functions, and equality con-
straint functions are all quadratic. Because we no longer assume this problem
is convex, the objective and inequality constraint functions are not necessarily
convex quadratics and the equality constraints are not necessarily affine. A
non-convex quadratically constrained quadratic problem generally has the form

p∗ = min
x∈Rn

1

2
xTH0x+ cT0x+ d0

s.t.
1

2
xTHix+ cTi x+ di ≤ 0, i ∈ I

1

2
xTHjx+ cTj x+ dj = 0, j ∈ E

where H0,Hi,Hj ∈ Rn×n, c0, ci, cj ∈ Rn, and d0, di, dj ∈ R for all i ∈ I and
j ∈ E . The set I contains the indices corresponding to inequality constraints
and the set E contains the indices corresponding to equality constraints.

Non-convex quadratically constrained quadratic problems are generally hard to
solve because they are not convex. However, we can use semidefinite program-
ming to obtains bounds on a problem of this form. We can first express this
problem in terms of the vector x ∈ Rn and the symmetric matrixX = xxT ∈ Sn:

p∗ = min
x∈Rn

1

2
〈H0,X〉+ cT0x+ d0

s.t.
1

2
〈Hi,X〉+ cTi x+ di ≤ 0, i ∈ I

1

2
〈Hj ,X〉+ cTj x+ dj = 0, j ∈ E

X = xxT
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We can now relax the last equality constraintX = xxT into a convex inequality
constraint X � xxT , which can also be expressed as X − x(1)−1xT � 0. This
constraint can be written as a linear matrix inequality, allowing us to write a
relaxed version of the non-convex quadratic problem as a semidefinite program:

q∗ = min
x∈Rn

1

2
〈H0,X〉+ cT0x+ d0

s.t.
1

2
〈Hi,X〉+ cTi x+ di ≤ 0, i ∈ I

1

2
〈Hj ,X〉+ cTj x+ dj = 0, j ∈ E[
X x
xT 1

]
� 0

Since we have relaxed a constraint into a more general convex one, the optimal
value, q∗, of the relaxed problem provides a lower bound on the optimal value,
p∗, of the non-convex quadratic problem (i.e. p∗ ≥ q∗).

Convex Optimization | S. Pohland



Part IV

Iterative Optimization
Algorithms

82



Chapter 11

Iterative Algorithms

11.1 Unconstrained Minimization Problems

11.1.1 Iterative Algorithms
The goal of an unconstrained minimization problem is to minimize a function
f : Rn → R over the domain, domf . We assume there exists an optimal solution
x̂ and denote the optimal value p∗ = f(x̂). If f is differentiable and convex, a
necessary and sufficient constraint for a point x̂ to be optimal is

∇xf(x)|x=x̂ = 0.

Sometimes we can use this optimality condition to solve a minimization problem
analytically, but often it is more useful to use iterative techniques. An iterative
algorithm computes a sequence of points x0,x1, . . . ,xk ∈ domf such that the
sequence converges to the optimal solution (i.e. limk→∞ f(xk) = p∗).

11.1.2 Lipschitz Continuity
One important property of functions to consider when discussing unconstrained
minimization problems is Lipschitz continuity. A function f : Rn → R is Lips-
chitz continuous on domf if there exists a constant L > 0 such that

|f(x)− f(y)| ≤ L||x− y||2, ∀x,y ∈ domf.

A continuously differentiable function f : Rn → R has a Lipschitz continuous
gradient on domf if there exists a constant L > 0 such that∣∣∣∣∇xf(x)−∇yf(y)

∣∣∣∣
2
≤ L||x− y||2, ∀x,y ∈ domf.

If a function f has a Lipschitz continuous gradient on its domain, it is said to
be L-smooth. If a function f is L-smooth and is twice differentiable, then

∇2
xf(x) � LIn, ∀x ∈ domf.
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A twice continuously differentiable function f : Rn → R has a Lipschitz contin-
uous Hessian on domf if there exists a constant L > 0 such that∣∣∣∣∇2

xf(x)−∇2
yf(y)

∣∣∣∣
2
≤ L||x− y||2, ∀x,y ∈ domf.

11.1.3 Strong Convexity
Another important property of functions in unconstrained minimization prob-
lems is strong convexity. A function f : Rn → R is strongly convex on some
subset S ⊆ Rn if there exists a constant m > 0 such that the function

f̃(x) := f(x)− m

2
||x||22 is convex on S.

If a function f is strongly convex on S and is twice differentiable, then

∇2
xf(x) � mIn, ∀x ∈ S.

11.2 Affine Iteration Algorithm
Consider a descent algorithm that admits an update rule of the form

xk+1 = Axk + b where A ∈ Rn×n, b ∈ Rn

Notice that for an initial point x0, this update rule can also be expressed as

xk = Akx0 +

k−1∑
i=0

Aib.

Assume that as k approaches infinity, xk approaches an equilibrium point,
x̂. We can express the value of the equilibrium point as

x̂ = lim
k→∞

xk = lim
k→∞

Akx0 +

∞∑
i=0

Aib.

11.2.1 Convergence for a Diagonalizable Matrix
If we can assume that A is diagonalizable and that we can express its diagonal
form as A = UΛU−1, then Ak = UΛkU−1. If any eigenvalue of A has
magnitude greater than one, then the corresponding element in Λk will approach
infinity as k goes to infinity, so some elements of Ak must also go to infinity. In
this case, the iterative algorithm will not reach an equilibrium point.

If the magnitudes of all the eigenevalues of A are less than or equal to one, the
magnitude of each element in Λ is less than or equal to one. When we take
the limit of each element of Λk as k goes to infinity, diagonal elements with
magnitude equal to one will go to one and elements with magnitude strictly
less than one will go to zero. In this case, Ak is bounded. If any eigenvalue of
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A is equal to one, the infinite sum of the element in Λi corresponding to this
eigenvalue is infinity. Therefore, the algorithm will not reach an equilibrium.

If the magnitudes of all the eigenevalues of A are strictly less than one, the
magnitude of each element in Λ is less than one. In this case, when we take the
limit of each element of Λk as k goes to infinity, all of the elements go to zero,
which implies that Ak approaches the zero matrix. Under this constraint,

x̂ =

∞∑
i=0

Aib =

∞∑
i=0

UΛiU−1b = U

( ∞∑
i=0

Λi

)
U−1b.

Because Λ is a diagonal matrix composed of the eigenvalues of A, we can write

∞∑
i=0

Λi =


∑∞
i=0 λ1(A)i

. . . ∑∞
i=0 λn(A)i

 .
Assuming that |λi(A)| < 1 for i = 1, . . . , n, each diagonal element of the matrix
above is an infinite sum of a converging geometric series, which tells us

∞∑
i=0

Λi =


1

1−λ1(A)

. . .
1

1−λn(A)

 = (In −Λ)−1.

This now allows us to write the equilibrium point of this descent algorithm as

x̂ = U(In −Λ)−1U−1b = (UInU
−1 −UΛU−1)−1b = (In −A)−1b.

11.2.2 Convergence for a General Matrix
Now consider the case when A is not necessarily diagonalizable. We can still
use the eigenvalues of A to characterize the convergence of a descent algorithm
of this form. Suppose that the algorithm has reached the equilibrium x̂ (i.e.
xk+1 = xk = x̂). Under this assumption, we can write

x̂ = Ax̂+ b.

Rearranging this equation, we have

(In −A)x̂ = b.

For now, assume that the matrix (In−A) is invertible. Under this assumption,

x̂ = (In −A)−1b.
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With this definition of the equilibrium, notice that we can write

xk+1 = Axk + b

= Axk + b+A(In −A)−1b−A(In −A)−1b

= A
(
xk − (In −A)−1b

)
+
(
In +A(In −A)−1

)
b

= A
(
xk − (In −A)−1b

)
+
(

(In −A)(In −A)−1 +A(In −A)−1
)
b

= A
(
xk − (In −A)−1b

)
+
(

(In −A+A)(In −A)−1
)
b

= A
(
xk − (In −A)−1b

)
+
(
In(In −A)−1

)
b

= A
(
xk − (In −A)−1b

)
+ (In −A)−1b

= A(xk − x̂) + x̂

Bringing the equilibrium x̂ to the left hand side, we have

xk+1 − x̂ = A(xk − x̂).

Defining a new variable as x̃k := xk − x̂, allows us to write

x̃k+1 = Ax̃k.

Now we simply have a linear time-invariant discrete time system with the state
vector x̃. We want xk to converge to the equilibrium point x̂ as k approaches
infinity, so we want x̃k = xk − x̂ to converge to the origin. Therefore, we want
the origin of the discrete time system to be an asymptotically stable equilibrium.
From the study of linear systems, this is true if and only if all of the eigenvalues of
A fall within the unit circle in the complex plane (i.e. |λi(A)| < 1 ∀i = 1, . . . , n).

Recall that we previously assumed that the matrix (In − A) is invertible. If
the eigenvalues of A fall within the unit circle in the complex plane, then the
eigenvalues of (In − A) must be strictly greater than zero and this matrix is
invertible. Therefore, if all of the eigenvalues of A fall within the unit circle,
then the descent algorithm converges to the equilibrium x̂ = (In −A)−1b.

11.2.3 Contraction Mapping Theorem
The contraction mapping theorem says that if U is a closed subset of a
Euclidean space and T : U → U satisfies

||T (x)− T (y)|| ≤ ρ||x− y||

for some ρ < 1 and for all x and y in U , then T has a unique fixed point in
U . In addition, the sequence xk+1 = T (xk) converges to that fixed point for
any initial point x0 ∈ U . This theorem can help us analyze the convergence
properties of the special class of algorithms that satisfy

x̃k+1 = Ax̃k where x̃k = xk − x̂.
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From the properties of norms, we know that

||Ax−Ay|| = ||A(x− y)|| ≤ ||A|| ||x− y||.

Therefore, if ||A|| < 1 for any matrix norm, then the contraction mapping
theorem says that the iterative algorithm converges to a unique equilibrium. We
know the origin must be an equilibrium, so x̃k → 0n, which implies xk → x̃.

11.2.4 Rate of Convergence
The rate of convergence of an iterative algorithm is defined as

µ =
||xk+1 − x̂||2
||xk − x̂||2

.

We previously showed that for any matrix A, whose eigenvalues fall within the
unit circle in the complex plane, we can write

xk+1 − x̂ = A(xk − x̂).

Taking the norm of both sides, we get

||xk+1 − x̂||2 = ||A(xk − x̂)||2 ≤ ||A||2||xk − x̂||2

||xk+1 − x̂||2
||xk − x̂||2

≤ ||A||2

Therefore, the rate of convergence is upper bounded by the induced l2 norm of
the matrix A, which is equivalent to the maximum singular value of A.

11.3 Power Iteration Algorithm
Given a symmetric matrix A ∈ Sn+ with eigenvalues λ1 > λ2 > . . . > λn > 0,
the power iteration algorithm is an iterative algorithm that follows the rule

xk+1 =
Axk
||Axk||2

.

Notice that for the first few values of the iteration number k,

x1 =
Ax0

||Ax0||2

x2 =
Ax1

||Ax1||2
=

(
A2x0

||Ax0||2

) ∣∣∣∣∣∣∣∣ A2x0

||Ax0||2

∣∣∣∣∣∣∣∣−1
2

=

(
A2x0

||Ax0||2

)(
||A2x0||2
||Ax0||2

)−1
=

A2x0

||A2x0||2
...

xk =
Akx0

||Akx0||2
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11.3.1 Convergence of Power Iteration
To analyze the convergence of the power iteration algorithm, note that if A
admits the spectral decomposition A = UΛUT , we can express xk as

xk =
UΛkUTx0

||UΛkUTx0||2
=
UΛkUTx0

||ΛkUTx0||2
.

Because U is an orthogonal matrix, this allows us to write

UTxk =
ΛkUTx0

||ΛkUTx0||2
.

To make it easier to find the equilibrium of this iterative algorithm, we can
define a new variable zk such that zk := UTxk. We can now express zk as

zk =
Λkz0
||Λkz0||2

=

[
λk1z

(1)
0 . . . λknz

(n)
0

]T
((
λk1z

(1)
0

)2
+ . . .+

(
λknz

(n)
0

)2)1/2 .
Assume that λ1 > λ2 > . . . > λn > 0. For very large values of k, the value of
λk1 is much larger than that of λki for i = 2, . . . , n. Therefore, as long as z(1)0 is
not equal to zero, the term

(
λk1z

(1)
0

)2 will dominate in the denominator of the
equation above as k →∞. This tells us that under this condition,

lim
k→∞

zk = e1.

Recall that we previously defined zk such that zk := UTxk, which means that
we can express xk as xk = Uzk. This now allows us to see that

lim
k→∞

xk = U lim
k→∞

zk = Ue1 = u1,

where u1 is the first column of U and the orthonormal eigenvector of A corre-
sponding to the largest eigenvalue, λ1. Therefore, as long as z(1)0 is not equal to
zero, the power iteration algorithm converges to the eigenvector u1 correspond-
ing to the largest eigenvalue of A. Once we have found this eigenvector, we can
find the largest eigenvalue λ1 using the equation Au1 = λ1u1.

The power iteration algorithm converges to the largest eigenvector if z(1)0 is non-
zero. Because z0 := UTx0, z

(1)
0 = uT1x0 is zero if and only if x0 is orthogonal

to the eigenvector u1. Therefore, the power iteration algorithm converges to
the largest eigenvector, assuming the initial guess, x0, is not orthogonal to u1.

11.3.2 Variations of Power Iteration
Second Largest Eigenvalue

There are a couple of common variations of the power iteration algorithm. First,
assume that instead of finding the largest eigenvalue of A and the correspond-
ing eigenvector, we want to find the second largest eigenvalue and corresponding
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eigenvector. In order for the algorithm to converge to the second largest eigen-
vector, we need z(1)0 to be zero and z(2)0 to be non-zero. Thereofore, we should
choose an itinital guess x0 that is orthogonal to u1. For any random vector
x0 ∈ Rn, the vector connecting x0 to its projection onto u1 is orthogonal to
u1. Thereofore, we could use the new initial value

x′0 = x0 −
xT0u1

||u1||2
u1.

Largest Singular Value

Another common variation of the power iteration algorithm is used to find the
largest singular value of a matrix M ∈ Rm×n that is not necessarily square
whose singular values are σ1 > σ2 > . . . > σr > 0. We can use the power
iteration algorithm with the matrix A = MTM to find the right singular
vector v1 corresponding to the largest singular value, σ1. We can then use the
equation Av1 = σ2

1v1 to solve for largest singular value. We can also use the
power iteration algorithm with the matrix A = MMT to find the left singular
vector u1 corresponding to the largest singular value, σ1. We can then use the
equation Au1 = σ2

1u1 to solve for largest singular value.
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Chapter 12

Descent Algorithms

12.1 Descent Methods
Descent algorithms are an iterative technique used to solve unconstrained
minimization problems, which use the following update rule:

xk+1 = xk + skvk, where

xk ∈ Rn is the current point,
xk+1 ∈ Rn is the updated point,
sk ∈ R++ is the step size/length,
vk ∈ Rn is the step/search direction, and
k ∈ N is the iteration number.

We assume that vk is a descent direction, meaning that vTk∇xf(x)
∣∣
x=xk

< 0.
Given a differentiable objective function f : Rn → R, an initial point x0 ∈
domf , and some stopping criterion (which generally depends on a tolerance
ε > 0), a general descent algorithm follows these procedures:

1. Set k = 0.

2. Choose a descent direction, vk.

3. Choose a step size, sk > 0.

4. Update the current point such that xk+1 = xk + skvk.

5. Check if the stopping criterion is satisfied.

(a) If the stopping criterion is satisfied, return xk.

(b) Otherwise, let k ← k + 1 and go to step 2.

90



CHAPTER 12. DESCENT ALGORITHMS

12.2 Step Size Selection

12.2.1 Exact Line Search
It is not always simple to analyze the convergence properties of descent algo-
rithms. Even if the function, f , that we aim to minimize is convex, the step
size, sk, must be chosen properly at each iteration to ensure that the descent
algorithm will converge. In order for the algorithm to converge, we need f(xk)
to decrease at a sufficient rate. Exact line search is a method for choosing the
optimal step size, s∗k, which provides the greatest possible decrease from f(xk)
to f(xk+1). Recall that the update rule tells us that xk+1 = xk + skvk, which
then implies that f(xk+1) = f(xk + skvk). The exact line search method finds
the optimal step size by solving the following minimization problem:

s∗k = arg min
sk≥0

f(xk + skvk).

If f is convex, a descent algorithm that selects the step size in this way is
guaranteed to converge to the optimal value. However, this method is often
computationally demanding, so exact line search is rarely used in practice.

12.2.2 Armijo Condition
Rather than finding the step size that provides the maximum function decrease,
we can use other methods to find a step size that provides a sufficient rate of
decrease. Consider the function φ : R+ → R, which is defined such that

φ(s) = f(xk + svk).

The gradient of this function with respect to s is

∇sφ(s) = ∇sf(xk+svk) = ∇xf(x)
∣∣
x=(xk+svk)

·∇s(xk+svk) = vTk∇xf(x)
∣∣
x=(xk+svk)

.

We will define the variable δk as this gradient evaluated at s = 0, i.e.

δk := ∇sφ(s)
∣∣
s=0

= vTk∇xf(x)
∣∣
x=xk

.

With this definition, we can express the line tangent to φ(s) at s = 0 as

l(s) = φ(0) + sδk.

For α ∈ (0, 1), we will also define a line l̄ : R+ → R such that

l̄(s) = φ(0) + αsδk.

The Armijo condition says that valid step sizes, s, that provide a sufficient
rate of decrease must satisfy the inequality φ(s) ≤ l̄(s) for some α ∈ (0, 1).
Furthermore, there exists some step size sk ∈ (0, s̄) that satisfies this condition,
where s̄ > 0 is the smallest non-negative value of s that such that φ(s̄) = l̄(s̄).

Convex Optimization | S. Pohland



CHAPTER 12. DESCENT ALGORITHMS

To understand this condition, note that δk < 0 because vk is assumed to be a
descent direction. Since we restrict s to be non-negative, we can then say that
sδk ≤ 0. Therefore, if we choose α ∈ (0, 1), then l̄(s) is greater than l(s) for all
values of s > 0. Recall that l(s) is the line tangent to φ(s) at s = 0. Therefore,
l̄(s) must lie above φ(s) for sufficiently small s > 0. Since φ(s) is bounded below
and l̄(s) is unbounded below, there must be some point, s̄, where φ(s) and l̄(s)
cross. Figure 12.1 helps demonstrate the Armijo condition.

Figure 12.1: For a step size s, φ(s) is a bounded function defined
such that φ(s) = f(xk + svk), where vk is a descent direction.
The function l(s) is the line tangent to φ(s) at s = 0, which
can be expressed as l(s) = φ(0) + sδk, and l̄(s) is defined such
that l̄(s) = φ(0) +αsδk for α ∈ (0, 1). Based on how we defined
these functions, l̄(s) must lie above φ(s) for small enough values
of s. We define s̄ as the first point where l̄(s) and φ(s) cross, so
φ(s) < l̄(s) for s ∈ (0, s̄) and φ(s̄) = l(s̄).

12.2.3 Backtracking Line Search
Often, the backtracking line search algorithm is employed to find a step size
that meets the Armijo condition. Given a differentiable function f : Rn → R,
an initial point x0 ∈ domf , a descent direction vk, an initial step size sinit
(usually we choose sinit = 1), and two constants α ∈ (0, 1/2) and β ∈ (0, 1), the
backtracking algorithm follows these procedures:

1. Set s = sinit and δk = vTk∇xf(x)
∣∣
x=xk

.

2. Compute φ(s) = f(xk + svk) and l̄(s) = f(xk) + αsδk.

3. Compare the value of φ(s) and l̄(s).

(a) If φ(s) ≤ l̄(s), return sk = s.
(b) Otherwise, let s← βs and go to step 2.
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12.3 Gradient Descent

12.3.1 Overview of Gradient Descent
Gradient descent is a descent algorithm in which the descent direction is the
negative gradient of the function (i.e. vk = −∇xf(x)

∣∣
x=xk

). With this choice
of descent direction, the update rule can be expressed as

xk+1 = xk − sk∇xf(x)
∣∣
x=xk

.

Given a differentiable function f : Rn → R, an initial point x0 ∈ domf , and a
tolerance ε > 0, the gradient descent algorithm follows these procedures:

1. Set k = 0.

2. Compute the descent direction vk = −∇xf(x)
∣∣
x=xk

.

3. Choose a step size sk > 0.

4. Update the current point such that xk+1 = xk + skvk.

5. Check if the stopping criterion (often ||vk||2 ≤ ε) is satisfied.

(a) If the stopping criterion is satisfied, return xk.
(b) Otherwise, let k ← k + 1 and go to step 2.

12.3.2 Gradient Descent with Backtracking
Often we use the backtracking line search algorithm to compute the step size
when using the gradient descent. Given a differentiable function f : Rn → R,
an initial point x0 ∈ domf , a tolerance ε > 0, an initial step size sinit (usually
sinit = 1), and two constants α ∈ (0, 1/2) and β ∈ (0, 1), the gradient descent
algorithm with backtracking follows these procedures:

1. Set k = 0.

2. Choose a step size sk > 0.

(a) Set s = sinit.

(b) Compute φ(s) = f
(
xk − s∇xf(x)

∣∣
x=xk

)
.

(c) Compute l̄(s) = f(xk)− sα
∣∣∣∣∣∣∇xf(x)

∣∣
x=xk

∣∣∣∣∣∣2
2
.

(d) Compare the value of φ(s) and l̄(s).
i. If φ(s) ≤ l̄(s), choose sk = s.
ii. Otherwise, let s← βs and go to step b.

3. Update the current point such that xk+1 = xk − sk∇xf(x)
∣∣
x=xk

.

4. Check if the stopping criterion is satisfied.

(a) If the stopping criterion is satisfied, return xk.
(b) Otherwise, let k ← k + 1 and go to step 2.
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12.3.3 Convergence of Gradient Descent
Non-Convex Function

If f is a non-convex function with a Lipschitz continuous gradient, then the
gradient descent algorithm converges to a stationary point of f (i.e. a point x̂
for which ∇xf(x)|x=x̂ = 0) for an appropriate choice of the step size sk. This
point is not necessarily a global minimum for the function; it may be a local
minimum, a local/global maximum, or an inflection point.

Convex Function

If f is a convex function, then ∇xf(x)|x=x̂ = 0 if and only if x̂ is a global
minimizer of f . Therefore, if f is a convex function with a Lipschitz continuous
gradient, then gradient descent converges to a global minimizer, x̂, for an appro-
priate choice of step size. Furthermore, the gradient descent algorithm produces
a sequence f(xk) that converges to the global minimum value p∗ = f(x̂).

Strongly Convex Function

If f is a strongly convex function, then the gradient descent algorithm converges
to the unique global minimizer, x̂, for an appropriate choice of step size. Fur-
thermore, the algorithm produces sequences ||xk − x̂||2, ||f(xk) − p∗||2, and
||∇xf(xk)||2 that converge to zero at a linear rate, meaning that the logarithm
of these sequences tends linearly to negative infinity.

12.4 Newton’s Method

12.4.1 Overview of Newton’s Method
While gradient descent is a first order method that only employs the gradient of
a function, Newton’s method is a second order technique that employs both
the gradient and Hessian of a function. In the pure Newton method, the step
size is sk = 1 and the descent direction, which is referred to as the Newton
step, is vk = −

(
∇2
xf(x)|x=xk

)−1∇xf(x)|x=xk
. With this choice of step size

and descent direction, the update rule for the pure Newton method is given by

xk+1 = xk −
(
∇2
xf(x)|x=xk

)−1
∇xf(x)|x=xk

.

The pure Newton method is generally not guaranteed to converge globally, so
we often use the damped Newton method. In the damped Newton method,
the descent direction is the same, but the step size, sk, is not necessarily equal
to one. The update rule for the damped Newton method is given by

xk+1 = xk − sk
(
∇2
xf(x)|x=xk

)−1
∇xf(x)|x=xk

.

Given a twice continuously differentiable function f : Rn → R, an initial point
x0 ∈ domf , and a tolerance ε > 0, the Newton method follows these procedures:
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1. Set k = 0.

2. Compute the Newton step vk = −
(
∇2
xf(x)|x=xk

)−1
∇xf(x)|x=xk

.

3. Choose a step size sk > 0.

4. Update the current point such that xk+1 = xk + skvk.

5. Compute the squared decrement λ2k = −vTk
(
∇2
xf(x)|x=xk

)−1
∇xf(x)|x=xk

.

6. Check if the stopping criterion (often λ2k ≤ ε) is satisfied.

(a) If the stopping criterion is satisfied, return xk.

(b) Otherwise, let k ← k + 1 and go to step 2.

12.4.2 Newton’s Method with Backtracking
Often we use the backtracking line search algorithm to compute the step size
when using the damped Newton method. Given a twice continuously differen-
tiable function f : Rn → R, an initial point x0 ∈ domf , a tolerance ε, an initial
step size sinit (usually sinit = 1), and two constants α ∈ (0, 1/2) and β ∈ (0, 1),
the damped Newton algorithm with backtracking follows these procedures:

1. Set k = 0.

2. Choose a step size sk > 0.

(a) Set s = sinit.

(b) Compute φ(s) = f
(
xk − s

(
∇2
xf(x)|x=xk

)−1
∇xf(x)|x=xk

)
and

l̄(s) = f(xk)− sα∇xf(x)T |x=xk

(
∇2
xf(x)|x=xk

)−1
∇xf(x)|x=xk

.

(c) Compare the value of φ(s) and l̄(s).

i. If φ(s) ≤ l̄(s), choose sk = s.
ii. Otherwise, let s← βs and go to step 2(b).

3. Update the current point such that

xk+1 = xk − sk
(
∇2
xf(x)|x=xk

)−1
∇xf(x)|x=xk

.

4. Check if the stopping criterion is satisfied.

(a) If the stopping criterion is satisfied, return xk.

(b) Otherwise, let k ← k + 1 and go to step 2.
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12.4.3 Convergence of Newton’s Method
Non-Convex Function

If f is a non-convex function with a Lipschitz continuous gradient, then New-
ton’s method converges to a stationary point of f (i.e. a point x̂ for which
∇xf(x)|x=x̂ = 0) for an appropriate choice of the step size sk. This point may
be a local/global minimum, a local/global maximum, or an inflection point.

Convex Function

If f is a convex function, then ∇xf(x)|x=x̂ = 0 if and only if x̂ is a global
minimizer of f . Therefore, if f is a convex function with a Lipschitz continuous
gradient, then Newton’s method converges to a global minimizer, x̂, for an
appropriate choice of step size.

Strongly Convex Function

Recall that if f is a strongly convex function, there exists a constant m > 0 such
that f(x)− m

2 ||x||
2
2 is convex. Additionally, if f has a Lipschitz continuous Hes-

sian, there exists a constant L > 0 such that ||∇2
xf(x)−∇2

yf(y)||2 ≤ L||x−y||2
for all x,y ∈ domf . If f is a strongly convex function with a Lipschitz contin-
uous Hessian, then Newton’s method converges to the unique global minimizer
x̂ for an appropriate choice of step size. Additionally, there is a constant η
satisfying 0 < η < m2/L that breaks the convergence of Newton’s method into
the following two phases:

1. Damped phase

Initially, the l2 norm of the gradient of f satisfies ||∇xf(xk)||2 ≥ η. During
this phase, the gap from optimality decreases by at least a fixed amount
γ > 0 with each step, which we can express as

f(xk+1)− f(xk) ≤ −γ.

2. Pure phase

Later, the l2 norm of the gradient of f satisfies ||∇xf(xk)||2 < η. During
this phase, no backtracking is needed to choose the step size because we
can use the step size sk = 1. Additionally, in this phase, the optimality
gap decreases by a factor

(
1
2

)
2m in m steps, which we can express as

L

2m2
||∇xf(xk+1)||2 ≤

( L

2m2
||∇xf(xk)||2

)2
.

Convergence to optimality during this phase is doubly exponential, which
is called quadratic convergence.
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12.5 Gradient Descent vs. Newton’s Method
As stated previously, gradient descent is a first order method that only employs
the gradient of a function, while Newton’s method is a second order technique
that employs both the gradient and Hessian of a function. Because the Hessian
provides information about the contour of the function and can give some indi-
cation of how far we are from the optimal solution, Newton’s method can follow
a more efficient path towards the optimum, as compared to gradient descent.
For this reason, Newton’s method often takes fewer iteration to converge to the
optimum than gradient descent. If the function is a convex quadratic, Newton’s
method actually converges in only one iteration. Although Newthon’s method
may converge in fewer iterations, gradient descent is more often used in practice
because the inverse of the Hessian of a function is typically hard to compute.
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